بایگانی دسته: آموزش آمار

تحليل عاملي اکتشافي (efa) و تحليل عاملي تاييدي (cfa)

تحليل عاملي اکتشافي (efa) و تحليل عاملي تاييدي (cfa)

تحليل عاملي مي‌تواند دو صورت اکتشافي و تاييدي داشته باشد. اينکه کدام يک از اين دو روش بايد در تحليل عاملي به کار رود مبتني بر هدف تحليل داده هاست.

در تحليل اکتشافي(Exploratory factor analysis) پژوهشگر به دنبال بررسي داده‌هاي تجربي به منظور کشف و شناسايي شاخص‌ها و نيز روابط بين آنهاست و اين کار را بدون تحميل هر گونه مدل معيني انجام مي‌دهد. به بيان ديگرتحليل اکتشافي(Exploratory factor analysis) علاوه بر آنکه ارزش تجسسي يا پيشنهادي دارد مي‌تواند ساختارساز، مدل ساز يا فرضيه ساز باشد.

تحليل اکتشافي وقتي به کار مي‌رود که پژوهشگر شواهد کافي قبلي و پيش تجربي براي تشکيل فرضيه درباره تعداد عامل‌هاي زيربنايي داده‌ها نداشته و به واقع مايل باشد درباره تعيين تعداد يا ماهيت عامل‌هايي که همپراشي بين متغيرها را توجيه مي‌کنند داده‌ها را بکاود. بنابر اين تحليل اکتشافي بيشتر به عنوان يک روش تدوين و توليد تئوري و نه يک روش آزمون تئوري در نظر گرفته مي‌شود.

تحليل عاملي اکتشافي روشي است که اغلب براي کشف و اندازه گيري منابع مکنون پراش و همپراش در اندازه گيري‌هاي مشاهده شده به کار مي‌رود. پژوهشگران به اين واقعيت پي برده اند که تحليل عاملي اکتشافي مي‌تواند در مراحل اوليه تجربه يا پرورش تستها کاملا مفيد باشد. توانشهاي ذهني نخستين ترستون ، ساختار هوش گيلفورد نمونه‌هاي خوبي براي اين مطلب مي‌باشد. اما هر چه دانش بيشتري درباره طبيعت اندازه گيري‌هاي رواني و اجتماعي به دست آيد ممکن است کمتر به عنوان يک ابزار مفيد به کار رود و حتي ممکن است بازدارنده نيز باشد.

از سوي ديگر بيشتر مطالعات ممکن است تا حدي هم اکتشافي و هم تاييدي باشند زيرا شامل متغير معلوم و تعدادي متغير مجهول‌اند. متغيرهاي معلوم را بايد با دقت زيادي انتخاب کرد تا حتي الامکان درباره متغيرهاي نامعلومي که استخراج مي‌شود اطلاعات بيشتري فراهم‌ ايد. مطلوب آن است که فرضيه اي که از طريق روش‌هاي تحليل اکتشافي تدوين مي‌شود از طريق قرار گرفتن در معرض روش‌هاي آماري دقيق‌تر تاييد يا رد شود. تحليل اکتشافي نيازمند نمونه‌هايي با حجم بسيار زياد مي‌باشد.

در تحليل عاملي تاييدي(Confirmatory factor analysis) ، پژوهشگر به دنبال تهيه مدلي است که فرض مي‌شود داده‌هاي تجربي را بر پايه چند پارامتر نسبتا اندک، توصيف تبيين يا توجيه مي‌کند. اين مدل مبتني بر اطلاعات پيش تجربي درباره ساختار داده هاست که مي‌تواند به شکل: 1) يک تئوري يا فرضيه 2) يک طرح طبقه بندي کننده معين براي گويه‌ها يا پاره تستها در انطباق با ويژگي‌هاي عيني شکل و محتوا ، 3)شرايط معلوم تجربي و يا 4) دانش حاصل از مطالعات قبلي درباره داده‌هاي وسيع باشد.

تمايز مهم روش‌هاي تحليل اکتشافي و تاييدي در اين است که روش اکتشافي با صرفه‌ترين روش تبيين واريانس مشترک زيربنايي يک ماتريس همبستگي را مشخص مي‌کند. در حالي که روش‌هاي تاييدي (آزمون فرضيه) تعيين مي‌کنند که داده‌ها با يک ساختار عاملي معين (که در فرضيه آمده) هماهنگ اند يا نه.

تحليل عاملي اکتشافي (efa) و تحليل عاملي تاييدي (cfa)

تحلیل داده های آماری

محدودیت های تحلیل مسیر

محدوديت هاي تحليل مسير
تحليل مسير نمي تواند ساختار علي زير بنايي را تاييد كند يعني بيان مي كند كه نقش نسبي متغييرها چيست اما ساختار علي مورد نظر محقق را بيان نمي سازد. با توجه به اين كه علت داراي تقدم زماني نسبت به معلول است بايد ترتيب زماني وقوع قبل از معلول وجود داشته باشد. براي ترتيب احتمالي متغييرها در دنياي واقعي ناگزيريم به مفاهيم نظري و شعور عادي خود متكي باشيم. در ادامه فهرستي از اين محدوديت ها ارائه مي شود:

  1. تحليل مسير مي تواند فرضيه هاي علي را ارزشيابي كند و در برخي از موارد نيز دو يا چند فرضيه ي علي را بيازمايد اما هرگز نمي تواند جهت عليت محقق را مشخص كند  یعنی نمی تواند گفت X  علت Y است و یا برعکس.
  2. 2.          تحليل مسير زماني مفيد است كه فرضيه هاي روشني براي آزمون يا تعداد كمي فرضيه كه همه آنها را بتوان در يك نمودار واحد نشان داد در دست باشد.  یعنی برای تعداد کمی از رابطه ها مناسب است.
  3. 3.           تحليل مسير را نمي توان به منظور اهداف اكتشاف (تحلیل اکتشافی) استفاده كرد.
  4. 4.           اين تحليل را نمي توان براي موقعيت هايي كه حلقه هاي بازخورد در فرضيه ها گنجانده شده است استفاده نمود.
  5. 5.          همه ي متغييرهاي مداخله گر بايد در تحليل رگرسيون چند متغييري به عنوان متغييرهاي وابسته عمل كنند. بنابراين همه آنها بايد داراي مقياس فاصله اي باشند. اندازه هاي طبقه اي يا ترتيبي تحليل مسير را نا ممكن مي سازند.

پرسشنامه استاندارد (دارای روایی، پایایی، روش نمره گذاری و منبع داخل و پایان متن )

مبانی نظری و پژوهشی

پایان نامه نویسی مقاله نویسی

کدگذاری در تحلیل مضمون

کدگذاری در تحلیل مضمون

کدگذاری در تحلیل مضمون روشی ساختارمند برای شناسایی مضامین اصلی و فرعی پیرامون پدیده مورد مطالعه است. روش‌های متعددی برای مقوله و مقوله‌بندی کردن در تحقیق کیفی وجود دارد. برخی از این روش‌ها در بحث کدگذاری در تحقیق کیفی ارائه شد. روش‌های کدگذاری در تحلیل مضمون مشابه کدگذاری در تحلیل محتوا است. به‌طور کلی روش واحدی برای کدگذاری در تحقیقات کیفی وجود ندارد. برای نمونه یکی از روش‌های مرسوم استفاده از رویکرد پیشنهادی اترید استرلینگ است. در این مطالعه کوشش شده است تا روش پیشنهادی براون و کلارک تشریح شود.

روش براون و کلارک

براون و کلارک (۲۰۰۶) روشی را برای کدگذاری در تحلیل مضمون ارائه کرده‌اند که با استقبال بسیاری مواجه بوده است. این الگوی پیشنهادی از سه قسمت مرحله، گام و اقدام تشکیل شده است. مراحل سه گانه این الگو عبارتند از:

  • تجزیه و توصیف متن
  • تشریح و تفسیر متن
  • ترکیب و ادغام

تجزیه و توصیف متن خود شامل آشنایی با متن، کدگذاری  ایجاد کدهای اولیه و در نهایت جستجو و شناخت مضامین است. در تشریح و تفسیر متن به ترسیم شبکه مضامین پرداخته می‌شود. در نهایت نیز در مرحله ترکیب و ادغام باید تحلیل شبکه مضامین و تدوین گزارش پرداخته شود. جهت ترسیم شبکه مضامین ابتدا باید مضامین را مرتب کرد. مهم ترین اقدام در این مرحله شناخت مقوله‌های فراگیر، سازمان‌دهنده و مضامین پایه است. اترید استرلینگ کدگذاری در تحلیل مضمون را براساس این سه رکن تشریح کرده است. برای تحلیل شبکه مضامین باید به تعریف و نام‌گذاری مضامین پرداخته شود. در نهایت نیز باید توصیف و توضیح شبکه مضامین ارائه گردد.

روش براون و کلارک

کدگذاری در تحلیل مضمون به روش براون و کلارک

روش اترید-استرلینگ

روش پیشنهادی اترید-استرلینگ Attride-Stirling یکی از روش‌های مرسوم کدگذاری در تحلیل مضمون است. این روش مبتنی بر تشکیل شبکه مضامین Thematic Network است و در پژوهش‌های مختلف مورد استفاده قرار می‌گیرد. شبکه مضامین شامل سه دسته از کدها و مفاهیم است:

  • مضامین پایه Basic Themes
  • مضامین سازمان‌دهنده Organizing Themes
  • مضامین فراگیر Global Themes

مضامین پایه شامل کدها و نکات کلیدی متن است. با مطالعه کامل متن باید خردترین کدها شناسایی و به عنوان یک مضمون پایه انتخاب شود. مضامین سازمان‌دهنده شامل مضامین حاصل از ترکیب و تلخیص مضامین پایه است. کدهای پایه باید مرور و مفاهیم مشابه در کنار هم قرار گیرند. پژوهشگر با توجه به توان تشخیص و تسلط خود باید نام مناسبی برای هر دسته کد انتخاب کند. در نهایت مضامین فراگیر شامل مضامین عالی دربرگیرنده حاکم بر متن به مثابه کل است.

تشریح کدگذاری در تحلیل مضمون

از دیدگاه براون و کلارک قاعده کاملاً مشخصی درباره شناخت مضمون وجود ندارد. اما می‌توان جهت تعریف و شناخت آن از اصول راهنمای مناسبی استفاده کرد. برخی از آن‌ها عبارت اند از:

نخست اینکه شناخت مضمون هرگز به معنی صرفاً یافتن نکته جالبی در داده‌ها نیست، بلکه مستلزم آن است که پژوهشگر مشخص کند در داده‌ها باید دنبال چه چیزی باشد؟ از چه چیزهایی باید صرف نظر و چگونه باید داده‌ها را تحلیل و تفسیر کند؟

دو دیگر آنکه واژه «مضمون» به طور ضمنی و تا حدی، مبین «تکرار» است. بنابراین مقوله‌ای که یک بار صرفاً یکبار در متنِ داده‌ها ظاهر شود نمی توان «مضمون» به حساب آورد. مگر آنکه نقش برجسته و مهمی در تحلیل نهایی داده‌ها داشته باشد. به طور معمول، تکرار به معنی مشاهده و ظاهر شدن در دو یا چند مورد در متن است.

سوم اینکه مضمون‌ها باید از یکدیگر متمایز باشد. با وجود اینکه هم پوشانی در میان مضامین تا حدودی اجتناب ناپذیر است اما اگر مرز کاملاً مشخص و تعریف شده‌ای میان مضامین مختلف وجود نداشته باشد نمی توان درک درستی از تحلیل‌ها و تفسیرها عرضه کرد.

جمع‌بندی کدگذاری در تحلیل مضمون

تحلیل مضمون، طیف گسترده‌ای از روش‌ها و فنون را در بر می‌گیرد. در فرایند تحلیل مضمون با توجه به اهداف و سؤالات تحقیق می‌توان از روش‌های تحلیلی مناسب آن استفاده کرد. در این مقاله، روش کاربردی براون کلارک در تحلیل مضمون معرفی گردید. به عقیده براون و کلارک در تحلیل مضمون، در صورتیکه پژوهشگر نخواهد به نظریه کامل برسد، نیازی نیست به اصول نظریه داده‌ بنیاد پایبند باشد. ضمن اینکه در نظریه داده‌بنیاد، تحلیل از منبع داده شروع می‌شود و تا رسیدن به اشباع نظری ادامه پیدا می‌کند. اما در تحلیل مضمون همه منابع داده، بررسی و مضامین کل داده‌ها، تحلیل و تفسیر می‌شود. کدگذاری در تحلیل مضمون دانشی است که با تمرین و مهارت بیشتر قابل انجام است.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative research in psychology, 3(2), 77-101.

Attride-Stirling, J. (2001). Thematic networks: an analytic tool for qualitative research. Qualitative research, 1(3), 385-405.

برگرفته از : پارس مدیر

اول آبان روز آمار و برنامه ریزی اول آبان روز آمار و برنامه ریزی

حضرت امام علی (ع) :
قِوامُ العَیشِ حُسنُ التَّقدِیرِ و مِلاکُهُ حُسنُ التَّدبیرِ:
پایداری زندگی به برنامه ‏ریزی درست و وسیله رسیدن به آن ، مدیریّت صحیح است.

روز آمار

اول آبان ماه در تقویم کشورمان روز ملی آمار و برنامه ریزی نام گذاری شده، اگر چه در تقویم جهانی ۲۰ اکتبر مقارن ۲۸ آبان ماه، روز جهانی آمار است.
فرارسیدن اول آبان، روز آمار و برنامه ریزی به تمامی آماری ها و آمار دوستان تبریک عرض میکنیم

مقاله نویسی

آزمون کای دو(chi-square) یا خی دو چیست؟- نیکویی برازش و استقلال در SPSS

آزمون کای دو(chi-square) یا خی دو چیست؟- نیکویی برازش و استقلال در SPSS

آزمون کای دو یا خی دو و یا مربع کای ازمونی است که فراوانی های مورد انتظار را با فراوانی های تحقیق مقایسه می کند تا مشخص شود آیا تفاوت معنا داری بین این دو فراوانی وجود دارد یا خیر. حال در ادامه ما دو نوع از آزمون کای دو را تعریف خواهیم کرد، سپس با مثالی ملموس آن را در SPSS اجرا خواهیم کرد.

آزمون کای دو (chi-square)چیست؟

دو نوع آزمون کای ۲ وجود دارد که هر کدام به منظوری متفاوت استفاده خواهند شد. در ادامه به این دو نوع خواهیم پرداخت.

آزمون کای دو برای نیکویی برازش

که برای تحلیل یک متغیر رده‌ای به کار می‌رود. به این صورت که اگر اختلافی در فراوانی میان رده‌های پاسخ وجود داشته باشد، آزمون کای دو برای نیکویی برازش آن را نشان می‌دهد. با توجه به نتایج این آزمون اگر مقدار معناداری آزمون برای گروهی کمتر از ۰/۰۵ به‌دست آمده باشد، می‌توان نتیجه گرفت که بین فراوانی‌های آن گروه تفاوت معناداری وجود دارد. به‌عبارتی تفاوت بین فراوانی‌ها از نظر آماری تایید می‌گردد.

آزمون کای دو برای استقلال

که برای تعیین رابطه‌ی بین دو متغیر رده‌ای از این آزمون کای دو استفاده می‌کنیم (جدول توافقی). به‌عبارتی اگر بخواهیم استقلال بین دو متغیر کیفی را آزمون کنیم از آماره کای دو دونمونه‌ای استفاده می‌کنیم. آماره کای دو بر مقادیر مشاهده شده و مورد انتظار که از طریق جدول توافقی به‌دست می‌آیند، استوار است. در جدول توافقی مقدار مشاهده شده عبارت است از تعدادی از نمونه‌ها که در یک خانه قرار دارند. مقدار مورد انتظار عبارت است از تعدادی که در صورت مستقل بودن دو متغیر پیش‌بینی می‌شود.

H۰: دو متغیر کیفی مستقل هستند.

H۱: دو متغیر کیفی مستقل نیستند.

جز اصلی جدول توافقی تعداد نمونه‌هایی است که در هر یک از خانه‌های جدول قرار می‌گیرند. روش‌های آماری که در این فرضیه‌های صفر به‌کار می‌روند بر اساس مقایسه موارد مشاهده شده در هر خانه با تعداد مورد انتظار آن عمل می‌کند. تعداد مورد انتظار به‌طور ساده تعدادی از نمونه‌هاست که در صورت صحیح بودن فرضیه صفر انتظار می‌رود در هر یک از خانه‌ها پیدا شود. فرضیه صفر در جدول توافقی به‌صورت مستقل بودن دو متغیر بیان می‌شود.

پیش‌فرض‌هایی که قبل از انجام این آزمون‌ها می‌بایستی برقرار باشند، به‌صورت زیرند:

نمونه‌گیری تصادفی: مشاهدات باید به‌طور تصادفی از جامعه انتخاب شوند.

استقلال مشاهدات: هر مشاهده مربوط به یک نفر است و هیچ شخصی دوبار در نمونه‌گیری حساب نمی‌شود.

اندازه فراوانی‌های مورد انتظار: زمانی که تعداد سلول‌ها کمتر از ۱۰ است و اندازه‌ی نمونه کوچک است، کمترین فراوانی مورد انتظاری که هر یک از سلول‌ها می‌بایستی برای آزمون کای دو داشته باشند ۵ است. با این حال، مقدار مشاهده شده می‌تواند کمتر از ۵ و یا حتی صفر باشد.

مثال آزمون کای دو یا خی دو برای نیکویی برازش

جدول زیر نگرش ۶۰ نفر را نسبت به ارتش آمریکایی مستقر در استرالیا نشان می‌دهد. اگر اختلافی در فراوانی میان رده‌های پاسخ وجود داشته باشد، آزمون کای دو برای نیکویی برازش آن را نشان می‌دهد.

آزمون-کای-دو

داده‌ها را در یک فایل SPSS ثبت کرده‌ایم، فایل داده‌ها را باز می‌کنیم:

ki2-Goodness-of-fit-in-spss

اکنون باید مقادیر ستون freq (فراوانی) را به عنوان وزن‌های متغیر attitude (نوع نگرش) تعریف کنیم. با این عمل مشخص می‌کنیم که 8 نفر کد 1 (موافق)، 20 نفر کد 2 (مخالف) و 32 نفر کد 3 (بی‌نظر) را انتخاب کرده‌اند. از منوی Data گزینه‌ی Weight Cases… را برگزینید تا کادر زیر باز شود:

ki2-Goodness-of-fit-in-spss-Weight-Cases
ki2-Goodness-of-fit-in-spss-Frequency-Variable

گزینه Weight cases by را انتخاب کنید و متغیر freq را به قسمت Frequency Variable انتقال دهید و روی گزینه OK کلیک کنید. با این عمل، وزن‌های مربوطه برای متغیر attitude تعریف می‌شوند.

اکنون از منوی Analyze به ترتیب گزینه‌های Nonparametric Tests، Legacy Dialogs و Chi-square… را انتخاب نمایید تا کادر مربوطه باز شود، متغیر attitude را به سمت راست منتقل و روی OK کلیک کنید.

ki2-Goodness-of-fit-in-spss-attitude
ki2-Goodness-of-fit-in-spss-Chi-square

خروجی به صورت زیر می‌باشد:

ki2-Goodness-of-fit-in-spss-out-put

با توجه به جدول فوق آزمون کای دو معنادار است (چون Sig = 0.001 < 0.05)، بنابراین نتیجه می‌گیریم که اختلافی معنادار در فراوانی نگرش افراد، نسبت به ارتش مستقر در استرالیا وجود دارد. همچنین جدول فراوانی نشان می‌دهد که اکثر مردم بی‌نظر هستند.

در مثال فوق، فراوانی‌های مورد انتظار را برای هر یک از ۳ گروه، یکسان در نظر گرفتیم. یعنی به هر گروه فراوانی مورد انتظار ۲۰ را اختصاص دادیم یا به عبارت دیگر، شانس یک سوم را به هر گروه اختصاص دادیم. اکثر اوقات فراوانی‌های مورد انتظار در بین گروه‌ها به طور یکسان توزیع نمی‌شود. فرض کنید در مثال فوق به ترتیب فراوانی‌های مورد انتظار ۱۵، ۱۵ و ۳۰ را به گروه‌ها اختصاص دهیم، اکنون دوباره مثال را انجام می‌دهیم.

از منوی Analyze به ترتیب گزینه‌های Nonparametric Tests، Legacy Dialogs و Chi-square… را انتخاب نمایید تا کادر مربوطه باز شود، سپس متغیر attitude را به سمت راست منتقل کنید.

در قسمت Expected Values با انتخاب گزینه‌ی Values فیلد مقابل آن فعال می‌شود. در این قسمت عدد 15 را تایپ و روی Add کلیک کنید. دوباره 15 را تایپ و روی Add کلیک کنید. در پایان عدد 30 را تایپ و روی Add کلیک کنید، اکنون کادر باید همانند شکل زیر باشد:

ki2-Goodness-of-fit-in-spss-Expected-Values

حال روی OK کلیک کنید تا خروجی نمایش یابد:

ki2-Goodness-of-fit-in-spss-out-put2

با توجه به آزمون کای دو مشاهده می‌کنیم که میان فراوانی‌های مشاهده شده (با توجه به فراوانی‌های موردانتظار و نسبت‌های داده شده به آن‌ها) اختلاف معناداری وجود ندارد (چون Sig = 0.079 > 0.05).

همان‌طور که قبلا هم اشاره کردیم هدف از ایجاد یک جدول توافقی، یافتن رابطه‌ی بین دو متغیر است، اکنون برای این منظور مثالی مطرح می‌کنیم:

مثال: (آزمون کای دو (ki2) برای استقلال)

فرض کنید می‌خواهیم بررسی کنیم که آیا سطح تحصیلات افراد از جنسیت مستقل است یا نه؟ نمونه‌ای متشکل از ۳۰۰ نفر برداشتیم و خلاصه نتایج را در جدول زیر آورده‌ایم:

ki2-Goodness-of-fit-table

برای این‌که داده‌های جدول را در SPSS تعریف کنیم، ابتدا یک فایل داده جدید باز کنید و متغیرهای Gender و Education را به ترتیب با کدهای مربوطه تعریف نمایید. به علاوه لازم است متغیر دیگری به نام Count (یا هر نام دلخواه دیگری) ایجاد نمایید، این متغیر در بردارنده‌ی مقادیر موجود در جدول می‌باشد. پس از وارد کردن اطلاعات، فایل داده باید به صورت زیر باشد:

Ki2-independence-test-in-spss

حال باید مقادیر ستون Count را به عنوان وزن‌های دو متغیر جنسیت و تحصیلات تعریف کنیم. از منوی Data گزینه‌ی Weight Cases… را برگزینید تا کادر زیر باز شود:

گزینه Weight cases by را انتخاب کنید و متغیر Count را به قسمت Frequency Variable انتقال دهید، سپس روی گزینه OK کلیک کنید. با این عمل، وزن‌های مربوطه برای متغیرها تعریف می‌شوند.

Ki2-independence-test-Frequency-Variable-in-spss

پس از تعریف متغیرها و تعیین وزن‌های مربوطه، به انجام تحلیل می‌پردازیم. از منوی Analyze به ترتیب گزینه‌های Descriptive Statistics و Crosstabs را انتخاب نمایید تا کادر مربوطه باز شود، متغیر Gender را به قسمت Row(s) و متغیر Education را به قسمت Column(s) انتقال دهید:

Ki2-independence-test-Crosstabs-in-spss
Ki2-independence-test-Crosstabs2-in-spss

قبل از انجام تحلیل به بررسی گزینه‌های موجود در این کادر می‌پردازیم.

با کلیک روی دکمه Statistics کادر زیر نمایان می‌شود:

Ki2-independence-test-Statistics -in-spss

با توجه به نوع متغیر مورد مطالعه، آماره‌های مناسب در این جدول خلاصه شده‌اند. مثلا اگر هر دو متغیرمان اسمی و یا یکی اسمی و دیگری ترتیبی باشد، از آماره‌های قسمت Nominal استفاده می‌کنیم. اگر هر دو رتبه‌ای باشند، از آماره‌های قسمت Ordinal استفاده می‌کنیم و اگر یکی اسمی و دیگری فاصله‌ای باشد، از آماره Eta موجود در قسمت Nominal by Interval استفاده می‌کنیم.

مقدار شاخص‌های رابطه برای متغیرهای ترتیبی بین ۱- و ۱+ تغییر می‌کند؛ اما در متغیرهای اسمی، چون صحبت از جهت رابطه، معنا ندارد، مقدار این شاخص‌ها بین صفر تا ۱+ تغییر می‌کند. توجه کنید که استفاده از هر کدام از این آماره‌ها شرایط خاص خود را دارد که توضیحات مختصری از این شاخص‌ها را در جدول زیر آورده‌ایم:

آماره کای دو (Chi-square): توسط این آماره، تنها فرض مستقل بودن متغیرها را می‌توان بررسی کرد و مقدار همبستگی و رابطه را نمی‌تواند مشخص کند.

همبستگی (Correlation): از طریق این گزینه، دو نوع همبستگی محاسبه می‌شود. ضریب همبستگی پیرسون و ضریب همبستگی اسپیرمن. ضریب همبستگی پیرسون هنگامی که هر دو متغیر جدول کمّی (پیوسته) هستند، به کار می‌رود و مقدار آن بین 1- و 1+ تغییر می‌کند. مقدار صفر نشان می‌دهد که هیچ رابطه‌ی خطی بین متغیرها وجود ندارد.

برای جداولی که سطر و ستون آنها دربردارنده داده‌های رتبه‌ای است، ضریب همبستگی اسپیرمن را به کار می‌برند که همانند ضریب همبستگی پیرسون تفسیر می‌شود. زمانی که اندازه نمونه بزرگ باشد بهتر است از ضریب همبستگی اسپیرمن استفاده نشود؛ چون این ضریب برای نمونه‌های بزرگ به طور مجانبی استفاده می‌شود و از دقت لازم برخوردار نیست. از این رو از ضرایب همبستگی معادل همانند کندال استفاده می‌کنند.

ضریب توافق (Contingency Coefficient): این ضریب اندازه‌ای از همبستگی بر پایه‌ی آماره کای – دو ارائه می‌کند و مقادیر دامنه آن بین صفر و 1 می‌باشد. مقدار صفر بیان می‌کند که بین متغیرهای سطری و ستونی همبستگی وجود ندارد و مقادیر نزدیک به 1 نشان می‌دهند که درجه بالایی از همبستگی بین متغیرها وجود دارد. این ضریب برای جداول 2×2 و بالاتر به‌کار می‌رود.

ضریب فای و V‌ی کرامر (Phi and Cramer’s V): کاربرد ضریب فای تنها محدود به جداول 2×2 است. یعنی زمانی که هر یک از متغیرهای سطری و ستونی تنها ارزش‌های صفر (خیر) و یک (بلی) داشته ‌باشند. برای تعمیم این ضریب به جداول بزرگتر از آماره V کرامر استفاده می‌کنیم.

ضریب لاندا (Lambda): این ضریب در دو حالت محاسبه می‌شود:

  • نامتقارن: به این دلیل به آن نامتقارن گویند که در محاسبه‌ی آن بسته به این که کدام یک از دو متغیر را مستقل و کدام را وابسته در نظر بگیریم، مقدار لاندا تغییر می‌کند؛ یعنی قرینه نیست.
  • متقارن: در این حالت فرقی نمی‌کند کدام یک از متغیرها را مستقل و کدام را وابسته در نظر بگیریم. در هر دو صورت مقدار لاندا یکسان خواهد بود.

در هنگام استفاده از این ضریب می‌بایستی مراقب بود. زمانی که دو متغیر از نظر آماری مستقل هستند، مقدار لاندای آن‌ها صفر خواهد بود؛ ولی عکس آن صحیح نیست. یعنی صفر بودن لاندا لزوما به معنای مستقل بودن نیست. به عبارت دیگر ممکن است دو متغیر با هم رابطه داشته باشند، اما لاندای آن‌ها صفر باشد، زیرا دانستن متغیر مستقل، هیچ کمکی به پیش‌بینی ما نکرده است.

گاما (Gamma): این آماره اندازه‌ای متقارن (یعنی فرقی نمی‌کند کدام متغیر مستقل و کدام وابسته باشد) از رابطه‌ی بین دو متغیر ترتیبی است که دامنه‌ی آن بین 1- و 1+ تغییر می‌کند. مقدار نزدیک به 1 از نظر قدر مطلق، نمایانگر یک پیوند قوی بین دو متغیر می‌باشد؛ مقدار نزدیک به صفر، بیان کننده‌ی یک رابطه‌ی ضعیف است.

d سامرز (Sommers`d): این ضریب همانند شاخص گاماست؛ ولی در آن یکی از متغیرها مستقل و دیگری وابسته فرض می‌شود و دامنه آن بین 1- و 1+ تغییر می‌کند.

تاو – b کندال (Kendall`s tau-b): این شاخص برای زمانی مناسب است که جدول توافقی شما مربع است و دامنه‌ی آن بین 1- و 1+ تغییر می‌کند.

تاو – c کندال (Kendall`s tau-c): این شاخص برای جداول مختلف قابل استفاده است و مقدار آن بین 1- و 1+ متغیر است.

ضریب اتا (Eta): این شاخص برای متغیرهای اسمی و فاصله‌ای به‌کار می‌رود، که در آن متغیر وابسته بر حسب مقیاس فاصله‌ای و متغیر مستقل بر حسب مقیاس اسمی اندازه‌گیری شده‌اند. دامنه‌ی این شاخص بین صفر تا 1 است. این شاخص نامتقارن، هیچ رابطه‌ی خطی بین متغیرها در نظر نمی‌گیرد. مقدار صفر این کمیت بیان می‌کند که هیچ رابطه‌ای بین متغیرهای سطری و ستونی وجود ندارد و مقادیر نزدیک به 1 بیان می‌کند، بین آن‌ها یک رابطه با درجه بالا وجود دارد. در خروجی SPSS دو مقدار برای این ضریب نمایش می‌یابد که هر بار یکی از متغیرهای سطری یا ستونی را به عنوان متغیر فاصله‌ای (وابسته) در نظر می‌گیرد.

کاپا (Kappa): ضریب کاپا، میزان توافق دو فرد رتبه‌دهنده که یک متغیر را رده‌بندی کرده‌اند، نشان می‌دهد. مثلا از دو معلم می‌خواهیم نمرات دانش‌آموزان را در یک مقیاس سه نمره‌ای درجه‌بندی کنند، می‌خواهیم بدانیم که این دو فرد چقدر با هم توافق دارند و درجه‌بندی‌هایشان به هم نزدیک است. مقدار 1 این ضریب بیانگر توافق کامل و مقدار صفر نشان‌دهنده‌ی تصادفی بودن توزیع کدهاست. نکته‌ای که در هنگام استفاده از این ضریب باید بدان توجه داشته باشید این است که هر دو متغیر از مقادیر رده‌بندی (کدهای) یکسانی استفاده کنند و دارای تعداد یکسانی رده باشند.

ریسک (Risk): اندازه‌ای از میزان رابطه بین یک فاکتور (متغیر گروه‌بندی شده) و رخ دادن یک پیشامد (یک گزینه پاسخ) می‌باشد و برای جداول 2×2 به‌کار می‌رود. اگر فاصله اطمینان این آماره عدد 1 را دربرداشته باشد، نشان‌دهنده این است که فاکتور با پیشامد رابطه ندارد.

مک نمار (McNemar): اگر متغیرهای دو حالتی جفت داشته باشیم، از این آماره استفاده می‌کنیم. متغیر دو حالتی متغیری است که تنها دارای مقادیر صفر و 1 است و جفت بدان معنی است که پاسخ‌های هر دو متغیر برای یک گروه از افراد به‌دست آمده‌اند، همانند اندازه‌گیری ضربان قلب، قبل و بعد از تمرین. از این آماره برای آشکارسازی تغییرات در پاسخ‌ها به دلیل انجام یک عمل (قبل و بعد) استفاده می‌کنیم.

آماره کاکران و مانتل – هنزل (Cochran`s and Mantel Hanszel Statistics): از این آماره برای آزمون استقلال بین یک متغیر فاکتور دوحالتی و یک متغیر پاسخ دوحالتی شرطی شده روی ساختارهای متغیرهای تصادفی کمکی (که به وسیله متغیرهایی که در قسمت Layer تعریف می‌کنیم، مشخص می‌شوند) استفاده می‌شود. توجه کنید که اگر یک متغیر Layer تعریف کنیم، آماره‌های دیگر به صورت لایه به لایه محاسبه می‌شوند؛ ولی این آماره یک‌بار برای تمام لایه‌ها محاسبه می‌شود.

دوباره به مثال بازمی‌گردیم، گزینه‌های Chi-square و Contingency Coefficient را انتخاب و روی Continue کلیک کنید تا به کادر قبل بازگردید. در این کادر روی OK کلیک نمایید تا خروجی محاسبه شود:

ki2-Contingency-Coefficient-in-spss-out-put
ki2-Chi-square-in-spss-out-put

در مورد دو جدول اول قبلا توضیح داده‌ایم. در سومین جدول با عنوان Chi-square Tests مقدار آماره کای – دو 018/39 گزارش شده است و مقدار معناداری مرتبط با آن Sig = 0.000 است؛ یعنی فرض استقلال متغیرهای جنسیت و سطح تحصیلات رد می‌شود. از طریق چهارمین جدول با توجه به مقدار ضریب توافق یعنی، 339/0 درمی‌یابیم که نسبت پایینی از همبستگی بین این متغیرها وجود دارد.

نکته: زمانی که فراوانی‌های مورد انتظار خانه‌های جدول کوچک باشند (کمتر از ۵) برای انجام آزمون استقلال، نمی‌توان از آزمون کای دو یا خی دو استفاده نمود بنابراین باید از آزمون‌های معادل یا آزمون دقیق فیشر استفاده کرد، مخصوصا هنگامی که جدول ۲×۲ است.

برگرفته از : آمار پیشرو

پرسشنامه استاندارد

نحوه نگارش فصل چهارم پایان نامه

نحوه نگارش فصل چهارم پایان نامه

نحوه نگارش فصل چهارم پایان نامه
فصل چهارم پایان نامه

این مطلب در رابطه با نحوه نگارش فصل چهارم پایان‌نامه می‌باشد

برای نگارش این فصل از پایان‌نامه می‌توانید طبق اصول و قواعد زیر اقدام فرمایید که استاندارد باشد و کیفیت کافی داشته باشد.

نحوه نگارش فصل چهارم پایان نامه

فصل چهار پایان نامه تقریبا اواخر کار تحقیقی دانشجو می باشد

و تفاوت های عمده ای با سایر فصول دارد .

تجزیه و تحلیل داده ها به هیچ عنوان قابل کپی و استفاده از منابع دیگر نیستند و باید نویسنده با تجزیه و تحلیل داده های خود این بخش از پایان نامه را تکمیل نماید. فصل چهارم با توجه به اینکه از پژوهش های پیشین در کنار جمع آوری اطلاعات شما می باشد ولی همه مطالب باید با تجزیه وتحلیل خاص پژوهش شما باشد و نباید هیچ مطلبی از پایان نامه های دیگر و یا نتایج آن ها کپی شود ولی شما می توانید در صورت نیاز در ادامه نتایج پژوهش های پیشین استفاده نموده و آن ها را در پژوهش خود توسعه دهید. در فصل چهار پایان نامه، محقق باید به کلیه سوالات اصلی و فرعی مطرح در فصل ۱ پاسخ گفته و کلیه فرضیات مطرح شده را آزمون نماید. در واقع فصل چهارم فصلی است که دانشجو همه تحقیقات و پژوهش های خود را تجزیه و تحلیل می کند و مخاطبین پایان نامه از مطالعه فصل اول تا کنون در انتظار این قسمت هستند که بتوانند به سوالاتی که در ذهنشان ایجاد شده است پاسخ دهند. و یقینا فصل چهارم باید پاسخ تمام ابهامات و سوالات پایان نامه باشد.

آموزش نرم افزارهای آماری
نفصل چهارم پایان نامه

بسته به روش پژوهش شما (کمی یا کیفی)، داده های جمع آوری شده بایستی تحلیل شوند. اگر پژوهش شما کیفی هست، داده ها بر اساس روش های ذهنی و فلسفی؛ و اگر پژوهش کمی هست، نتایج مرتبط با فرضیه ها باید به صورت جدول و نمودار، ارائه و تجزیه و تحلیل شوند. نتایج بدست آمده رو تفسیر و تبیین نکنید، چون در فصل پنجم این کار صورت خواهد گرفت.

یک نکته کلیدی در رابطه با پایان نامه هایی که موضوع آنها تاریخ می باشد: اگر پایان نامه تاریخی باشد، تعداد فصل ها به نسبت متغیرها و پارامترهای اصلی افزایش می یابد که به علت کثرت و عمومیت فصل چهارم پایان نامه با عنوان یافته های پایان نامه نگاشته می شود.نحوه نگارش فصل دوم پایان نامه

بخش های فصل چهارم پایان نامه

مقدمه

همانند همه فصل های دیگر پایان نامه این فصل نیز مقدمه دارد . باید یک سرآغاز خوب برای اسن فصل از پایان نامه خود در نظر بگیرید. مقدمه اولین بخش همه فصل ها می باشد که توضیح جزئی و بسیار کوتاهی است که صرفا با هدف آشنایی مخاطب با مطالب مندرج در این فصل نوشته می شود.

تصویر
فصل چهارم پایان نامه

توصیف داده ها

نویسنده باید سعی کند در بخش توصیف داده ها با کمک جداول و نمودار های مناسب ویژگی های نمونه مورد بررسی را معرفی کند و به توضیح مختصری در رابطه با هر نوع جدول و نموداری بپردازد. پیش تر در فصل سوم پایان نامه، محقق به تهیه پرسشنامه یا روش ­های دیگری برای گردآوری داده ­ها پرداخته است که حالا باید با توجه به ویژگی­ های فردی افراد پاسخ دهنده به پرسشنامه یا مصاحبه شوندگان، این بخش از فصل چهارم را تکمیل کند.

در این بخش از فصل چهارم پایان نامه، محقق باید با کمک جداول و نمودارهای مناسب، به معرفی ویژگی ­های نمونه مورد بررسی بپردازد و توضیح مختصری درباره هر جدول و نمودار ارائه کند. این ویژگی ­ها می تواند مرتبط با سن، جنسیت، میزان تحصیلات، سابق کار، تجرد یا تاهل و موارد اینچنینی باشد که بتوان از جمع آوری این اطلاعات، جدول یا آماری استخراج کرد و در این بخش به نمایش گذاشت.

آزمون فرضیات یا پاسخگویی به سوالات تحقیق

با توجه به اینکه این فصل مربوط به تجزیه و تحلیل داده ها می باشد نویسنده در این بخش می بایست با بهره گیری از آزمون­ های مناسب، اقدام به تحلیل داده ­های بدست آمده کرده و نتیجه را توضیح دهد. برای تحلیل داده ­ها به ابزارهای آماری و نرم افزارهایی نظیر spss نیاز است. مهم ترین قسمت فصل چهارم بخش آزمون فرضیات و پاسخگویی به سوالات تحقیق می باشد. معمولا سطح اطمینان استاندارد برای تحلیل داده ها ۹۵ درصد است، بنابراین اگر محقق سطح اطمینان تحلیل داده ­ها را اعلام نکند، این سطح اطمینان ۹۵ درصد در نظر گرفته می­ شود و ۵ درصد خطا در آن پذیرفته می­ شود. هر عدد دیگری به غیر از ۹۵ درصد باید اعلام شود تا سایرین نیز در جریان قرار بگیرند.

تحلیل داده های آماری
فصل چهارم پایان نامه

بررسی اختلاف نظرها

این بخش از جمله قسمت هایی است که برای همه تحقیقات لازم نیست ولی در صورتی که محقق تمایل داشته باشد می تواند این قسمت را نیز در فصل چهارم پایان نامه قرار دهد. در اصل در این بخش محقق به سئوالاتی جواب می­ دهد که اختلاف نظرهای احتمالی بین نمونه مورد بررسی را از نظر ویژگی­ هایشان نشان می­ دهد.

بررسی وضعیت متغیرهای مورد بررسی

با تحلیل و بررسی نتایج این پرسشنامه و با در نظر گرفتن فرضیات صفر و یک، فرض صفر ناراضی بودن پرسنل از شغل و فرض یک راضی بودن پرسنل از شغلشان را نشان خواهد داد.

به این ترتیب با بخش های مختلف فصل چهارم نیز آشنا شدید و اکنون این فصل را نیز می توانید با دقت و رعایت جزئیات بنویسید. فصل چهارم همانطور که اشاره شد فصل بسیار مهمی می باشد و تجزیه و تحلیل نتایج در این بخش انجام خواهد شد بنابراین حتما به نکات کلیدی دقت فرمایید و با رعایت قوانین و جزئیات نگارش را انجام دهید.

برگرفته از ساعد نیوز

آموزش پیشرفته sPSS
نگارش تصویب پروپوزال دکتری

در این سایت انواع پرسشنامه استاندراد و تحلیل داده های آماری پایان نامه و مقاله انجام می گیرد.

برای مشاهده لیست همه ی  پرسشنامه های استاندارد لطفا همین جا روی پرسشنامه استاندارد  کلیک فرمایید.

توجه: تاکنون پرسشنامه ها در 3 برگه لیست شده و به مرور بر تعداد آن ها افزوده می شود. برای رفتن و مشاهده لیست ها هر برگه روی نام آن در زیر کلیک کنید.

رفتن به برگه 1 پرسشنامه های استاندارد

رفتن به برگه 2 پرسشنامه های استاندارد

رفتن به برگه 3 پرسشنامه های استاندارد

توجه: همه ی پرسشنامه هااز منابع معتبر تهیه شده،  استاندارد ، دارای روایی و پایایی و منابع داخل و پایان متن می باشند .

همه ی پرسشنامه ها  قابل ویرایش در قالب نرم افزار ورد Word می باشد. 

تحلیل داده های آماری
تحلیل های کمی با نرم افزار های : SPSS – Amos – Pls
تحلیل های کیفی با نرم افزار های : Maxqda – NVivo

نرم افزار های کمی: SPSS- PLS – Amos

نرم افزار کیفی: Maxquda

مناسب ترین قیمت و کیفیت عالی انجام می گیرد.

تعیین حجم نمونه با:Spss samplepower

برای تحلیل داده های آماری با کیفیت بالا و قیمت مناسب همین جا  کلیک

روش های تماس:

Mobile :  09143444846  واتساپ – تلگرام

(تا جای ممکن با واتساپ پیام بفرستید)

Telegram: @abazizi

وبلاگ ما

همچنین بخش گیاهان دارویی با قیمت ارزان و کیفیت خوب راه اندازی شده است:

فروشگاه گیاهان دارویی 

پایان نامه نویسی مقاله نویسی

✳️داده های پرت و کناری چه دادههایی هستند و چرا ما باید مراقب آنها باشیم؟✳️

◀️تعاریف در مورد داده های پرت زیاد است و عموما به نقاطی اطلاق می شوند که از نرم متغییر یا جامعه خارج اند. هاوکینز(1980)، استیونس(1984) و راسمونس(1988) داده های پرت را مشاهداتی می دانند که آنقدر از بقیه داده های جدا باشد که این سوء ظن را ایجاد کند که داده ها مربوط به یک مکانیزم دیگر است.”

◀️همچنین واینر(19976) کناری بودن را به وقایعی نسبت می دهد که به ندرت اتفاق می افتند. این نقاط در نزدیکی سه انحراف استاندارد از میانگین قرار دارند و از این رو ممکن است تاثیر زیادی در برآورد پارامترها داشته باشند. نقاط پرت می توانند اثرات نامطلوبی بر تحلیل های آماری بگذارند.

📝 اولا آنها باعث افزایش واریانس خطا و کاهش توان آزمون می گردند.
📝 دوم این که اگر به طور تصادفی توزیع نیافته باشند، باعث برهم زدن نرمال بودن داده ها می شوند و از این رو مفروضه ی نرمال بودن توزیع داده ها از بین می برند و بخت رخداد خطاهای آول و دوم را به شدت افزایش می دهند. این مسئله در مورد تحلیل های چند متغییری که نیازمند مفروضات کرویت و نرمال بودن چند متغییری است اهمیت بیشتری پیدا می کند.
📝سومین عامل تاثیر جدی داده های پرت در برآورد اریب پارامترها است. بنابراین غربال داده ها برای شناسایی و حذف داده های پرت ضرورت دارد.

<iframe allow=’autoplay’ src=”https://affstat.adro.co/imp/d3dua21CVEY4ajAzeHQzODVISmladz09?sb=true&mb=true” frameborder =’0′ scrolling=’yes’ width=’100%’ height=’302px’ style=’display: block !important; min-height:302px !important;’></iframe> <iframe allow=’autoplay’ src=”https://affstat.adro.co/imp/am1vdUI2SHMwYmdMdnhyNW5XODR0UT09?sb=false&mb=false” frameborder =’0′ scrolling=’no’ width=’800′ height=’400′ style=’display: block !important; min-height:302px !important;’></iframe> <iframe allow=’autoplay’ src=”https://affstat.adro.co/imp/SVMvS2NZaU1wWjFPZGJSYWF3VFZpUT09?sb=true&mb=true” frameborder =’0′ scrolling=’yes’ width=’100%’ height=’302px’ style=’display: block !important; min-height:302px !important;’></iframe> در اینجا بهترین بازی های رایانه ی و نرم افزارهای مختلف آورده شده است، می توانید هر یک از آن ها را بخرید و جلو در منزلتان تحویل بگیرید فقط با چند کلیک ساده می توانید محصولات صوتی و تصویری زیر را خرید کند و جلو درب منزلتان تحویل بگیرید می توانید محصولات زیر را بخرید و درب منزل خودتان تحویل بگیرید!
آموزش پیشرفته sPSS

بررسی توصیفی و استنباطی نرمال بودن داده های تحقیق؟ آیا استفاده از آزمون های آماری برای بررسی نرمالیتی هر نوع داده ای مناسب است؟

در بسیاری از تکنیک های آماری، نرمال بودن توزیع داده ها یک پیش فرض است.

وقتی که داده ها از توزیع نرمال پیروی نکنند، ممکن است استفاده از این روش های آماری، منجر به نتیجه گیری اشتباه گردد.

بنابراین آزمون نرمال بودن داده ها اهمیت می یابد.

برخی از تحلیل ها و روش های آماری که پیش شرط نرمال بودن توزیع داده ها و یا باقیمانده های مدل برای آن ها وجود دارد عبارتند از:

  • آزمون های تی استودنت (تک نمونه ای و دو نمونه ای زوجی و وابسته)
  • آنالیز واریانس (ANOVA)
  • آزمون های معناداری ضرایب در رگرسیون
  • آزمون فیشر برای همگنی واریانس جوامع
  • آزمون همبستگی پیرسون

توزیع نرمال، مهم ترین توزیع آماری است هم به جهت اینکه پیش فرض بسیاری از

روش های آماری است ( در عمل پدیده های مختلفی از قانون نرمال پیروی می کنند و این توزیع با توزیع های مختلفی ارتباط پیدا می کند)

و نیز به سبب قضیه مهم حد مرکزی.

در بسیاری از موارد در صورت وجود نمونه به اندازه کافی، جهت تخمین برخی از احتمالات،

می توان از این توزیع بهره برد (به این معنا نیست که نمونه های بزرگ از توزیع نرمال پیروی می کنند بلکه با افزایش

حجم نمونه، توزیع میانگین داده ها و یا برخی آماره های دیگر تحت شرایطی به نرمال گرایش دارد).توزیع نرمال

توزیع نرمال

برای بررسی نرمال بودن داده ها از دو روش کلی می توان بهره برد

  1. روش توصیفی شامل نمودارها و بررسی شاخص های آماری
  2. روش استنباطی شامل آزمون فرض ها

روش های توصیفی در بررسی نرمال بودن داده ها:

برای بررسی نرمال بودن توزیع داده ها،

ابتدا باید این نکته را توجه داشت که داده هایی که به دنبال بررسی توزیع احتمالی آن هستیم باید کمی و با مقیاس فاصله ای یا نسبی باشند (برای آشنایی با مقیاس های آماری اینجا کلیک کنید).

بنابراین داده هایی که غیر از این باشند،

مثلاً از نوع کیفی اسمی یا کیفی ترتیبی، مثل داده های جمع آوری شده از پرسشنامه با طیف لیکرت، به هیچ وجه نمی توانند از توزیع نرمال پیروی کنند،

حتی اگر برخی از روش ها مثل رسم هیستوگرام داده ها (رسم هیستوگرام برای این داده ها اشتباه است و باید از نمودار میله ای استفاده شود)، توزیع نرمال را تایید کند.

الف) رسم هیستوگرام داده ها و مقایسه آن با منحنی چگالی توزیع نرمال

رسم هیستوگرام داده ها به همراه منحنی توزیع نرمال کمک زیادی به تشخیص نرمال بودن توزیع داده ها می کند.

معمولاً با این روش می توان نرمال نبودن توزیع داده ها و دلایل آن را مشاهده کرد.

اگر هیستوگرام داده ها به توزیع نرمال نزدیک بود آنگاه می توان به سراغ آزمون فرض رفت.

در شکل زیر هیستوگرام یک سری داده استاندارد شده، به همراه منحنی نرمال استاندارد رسم شده است.

توزیع داده ها به توزیع نرمال بسیار نزدیک است (داده ها از توزیع نرمال شبیه سازی شده است).

هیستوگرام داده ها و نمودار چگالی توزیع نرمال

نکته: برای رسم هیستوگرام داده ها، باید اول داده ها را استاندارد شده (منهای میانگین و تقسیم بر انحراف معیار)

و سپس با منحنی نرمال استاندارد مقایسه شود یا اینکه هیستوگرام داده های اصلی را با توزیع نرمال با میانگین و انحراف معیار داده ها مقایسه شود.

علاوه بر هیستوگرام، استفاده از نمودار جعبه ای نیز می تواند سودمند باشد.

ب) بررسی میزان کشیدگی و چولگی داده ها و مقایسه آن با مقدار این شاخص ها در توزیع نرمال

دو معیار کشیدگی و چولگی در داده ها در تشخیص نرمال بودن توزیع احتمالی داده ها، اهمیت زیادی دارد

و فلسفه برخی از آزمون ها نرمالیتی هم بررسی همین معیارهاست.

چولگی به میزان عدم تقارن منحنی فراوانی داده ها نسبت به منحنی فراوانی توزیع نرمال استاندارد گفته می شود. در داده های نرمال، منحنی فراوانی به شکل زنگوله مانند و متقارن است به نحوی که می توان شکل را از وسط به دو نیم تقسیم کرد. ولی اگر تمرکز داده ها در یک سمت منحنی نسبت به سمت دیگر بیشتر باشد، نمودار فراوانی داده ها چوله است. اگر تمرکز به سمت راست باشد، چوله به چپ و اگر به سمت چپ باشد، چوله به راست گویند.چولگی

چولگی

برای محاسبه میزان چولگی سه ضریب چولگی معمولاً استفاده می شود،

ضریب چولگی اول پیرسون، ضریب چولگی دوم پیرسون و ضریب گشتاوری چولگی (آمار و احتمال مقدماتی بهبودیان).

همچنین کشیدگی به میزان برجستگی منحنی فراوانی داده ها نسبت به منحنی فراوانی توزیع نرمال استاندارد گفته می شود.

معمولاً در محاسبه میزان چولگی و کشیدگی یک نمونه از فرمول های زیر استفاده می شود:

\[ b= \frac{\mu_3}{s^3}=\frac{\frac{1}{n}\sum_{i=1}^n (x_i-\bar{x})^3} {\sqrt{\frac{1}{n-1}\sum_{i=1}^n (x_i-\bar{x})^2}^3}\]
\[ \frac{.}{.} \]
\[k=\frac{\mu_4}{s^4}-3=\frac{\frac{1}{n}\sum_{i=1}^n (x_i-\bar{x})^4}{(\frac{1}{n-1}\sum_{i=1}^n (x_i-\bar{x})^2)^2}-3\]
کشیدگی

ج) رسم نمودار چندک  چندک و احتمال – احتمال

یکی دیگر از روش های بررسی نرمال بودن داده ها، نمودار چندک – چندک و احتمال – احتمال است.

ایده نمودار چندک – چندک مقایسه چندک های نمونه ای داده ها و چندک های توزیع موردنظر است. در اینجا با توزیع نرمال استاندارد مقایسه صورت می گیرد.

اگر داده ها از توزیع نرمال پیروی کنند، انتظار می رود که نمودار پراکنش چندک های نمونه ای داده ها در مقابل چندک های توزیع نرمال استاندارد در راستای یک خط راست قرار گیرند

(نیاز به استاندارد کردن داده ها نیست).

برای درک فلسفه ایده این روش فرض کنید X_1, X_2, \dots , X_n یک نمونه تصادفی از توزیع نرمال

با میانگین \mu و انحراف معیار \sigma در این صورت:

\[ Z_i = (X_i-\mu) / \sigma , i=1, 2, \dots, n \]

استاندارد شده داده ها و دارای توزیع نرمال استاندارد است.

اگر Z_{(1)}, Z_{(2)}, \dots, Z_{(n)} مرتب شده Z_i ها باشند

به نحوی که Z_{(1)} \leq Z_{(2)} \leq \dots  \leq Z_{(n)} و Z_{(i)}ها چندک i/n ام نمونه هستند.

از طرفی تبدیل استاندارد ساز داده ها، نگاشتی صعودی است بدین معنی

که اگر x<y آنگاه (x-\mu)/ \sigma<(y-\mu)/ \sigma بنابراین می توان نوشت:

\[ Z_{(i)} = (X_{(i)}-\mu) / \sigma , i=1, 2, \dots, n \]

زیرا:

\[ Z_{(1)} \leq Z_{(2)} \leq \dots \leq Z_{(n)}  \Longleftrightarrow   X_{(1)} \leq X_{(2)} \leq \dots \leq X_{(n)} \]

به عبارت دیگر چون تبدیل استاندارد ساز یک تبدیل صعودی است،

چه اول داده ها را مرتب کرده و سپس تبدیل بزنیم و چه تبدیل زده

و سپس داده های حاصل را مرتب کنیم، در هر دو صورت نتیجه یکسان خواهد بود.

اگر داده ها از توزیع نرمال پیروی کنند، انتظار داریم که Z_{(i)} با چندک i/n ام  توزیع نرمال استاندارد تقریباً برابر باشند.

یعنی Z_{(i)}  \simeq  q_{i/n}. از طرفی به جای q_{i/n} بهتر است از q_{(i-0.5)/n} یا q_{i/(n+1)} استفاده کرد.

بنابراین X_{(i)} \simeq \sigma q_{(i-0.5)/n}+\mu. که معادله یک خط راست با عرض از مبدا  \mu و شیب \sigma است.

پس اگر توزیع داده ها از توزیع نرمال پیروی کند انتظار می رود که نمودار پراکنش چندک های نمونه ای

و چندک های توزیع نرمال در راستای خطی راست باشد.

نکته: اگر نمودار چندک – چندک، نیمساز ربع اول دستگاه مختصات باشد، توزیع داده ها نرمال استاندارد است.

نکته: از این روش می توان در بررسی برازش توزیع های دیگر به داده ها نیز استفاده کرد.

کافیست به چندک های نمونه ای داده ها در مقابل چندک های توزیع موردنظر بررسی شود.

نکته: در نمودار چندک – چندک لزوماً نیاز به استاندارد سازی داده ها نیست،

طبق آنچه که گفته شد اگر چندک های نمونه ای در مقابل مقادیر مورد انتظارشان در توزیع نرمال استاندارد رسم شود،

انتظار می رود که یک خط راست تشکیل شود؛

حال اگر داده ها استاندارد شود، در صورت نرمال بودن داده ها خط مورد نظر نیمساز ربع اول است

ولی اگر استاندارد نشود، خطی با عرض از مبدأ برابر با میانگین داده ها و شیبی برابر با انحراف معیار داده ها تشکیل می شود.

در روش رسم نمودار احتمال – احتمال نیز مقادیر تابع توزیع تجربی داده ها در مقابل مقادیر مورد مورد انتظار تابع توزیع موردنظر (در اینجا توزیع نرمال) رسم می شود.

در صورتی که توزیع داده ها نرمال باشد، انتظار می رود که نمودار حاصل در امتداد یک خط راست (نیمساز ربع اول) باشد.P-P plot & Q-Q plot

P-P plot & Q-Q plot

آزمون های آماری بررسی نرمال بودن توزیع داده ها

برای بررسی نرمال بودن توزیع داده ها، آزمون های زیادی پیشنهاد شده است از جمله:

اندرسون – دارلینگ، کلوموگروف – اسمیرنوف، شاپیرو – ویلک، جارکو – برا، لیلیفورس، نیکویی برازش کای دو، دی آگوستینو و… .

استفاده از آزمون های کلوموگروف – اسمیرنوف، شاپیرو – ویلک و اندرسون – دارلینگ عمومیت بیشتری دارد.

با افزایش حجم نمونه انتظار می رود که توان آزمون ها نیز بیشتر شود ولی از بین این آزمون ها، معمولاً شاپیرو – ویلک بیشترین توان و کلوموگروف – اسمیرنوف کمترین توان را دارد.

آزمون های نرمالیتی از لحاظ فلسفه آزمون به سه دسته کلی تقسیم بندی می شوند:

آزمون هایی که تابع توزیع تجربی داده ها با تابع توزیع نرمال مقایسه می کنند

(مثل کلوموگروف – اسمیرنوف)، آزمون هایی که براساس یک رابطه رگرسیونی و یا تحلیل همبستگی

بین آماره های ترتیبی و مقادیر مورد انتظارشان شکل گرفته اند (مثل شاپیرو – ویلک)

و آزمون هایی که براساس مقایسه شرایط عمومی داده ها با توزیع نرمال مثل چولگی و کشیدگی شکل گرفته اند (مثل دی آگوستینو).

نکته: آزمون هایی که در اکثر نرم افزارهای آماری تحت عنوان آزمون کلوکوگروف – اسمیرنوف

برای بررسی توزیع نرمال آمده است در واقع شکل اصلاح شده این آزمون برای بررسی نرمال بودن توزیع داده هاست

که در برخی منابع این نوع آزمون تحت عنوان آزمون لیلیفورس یاد می شود.

آزمون لیلیفورس در بررسی نرمالیتی نسبت به آزمون کلی کلوموگروف – اسمیرنوف توان بالایی دارد

که به همین خاطر در اکثر نرم افزارهای آماری در کنار آزمون شاپیرو – ویلک گنجانده شده است.

بیشترین توان های آزمون نرمالیتی در بین چهار آزمون متداول به ترتیب متعلق

به شاپیرو – ویلک، اندرسون – دارلینگ، لیلیفورس و کلوموگروف – اسمیرنوف است.

نکته: فلسفه آزمون شاپیرو – ویلک شبیه به فلسفه نمودار چندک – چندک است.

در این آزمون یک رابطه رگرسیونی بین آماره های ترتیبی داده ها و مقادیر مورد انتظار آماره های ترتیبی توزیع نرمال

در نظر گرفته می شود و آماره آزمون، چیزی شبیه به ضریب تعیین در رگرسیون است که هر چقدر بیشتر باشد نشان دهنده نزدیکی توزیع داده ها به توزیع نرمال است و مقادیر کوچک آماره آزمون باعث

رد فرض صفر (نرمال بودن توزیع داده ها) می شود.

نکته:برای اجرای آزمون شاپیرو – ویلک تعداد نمونه حداقل ۳ و حداکثر ۵۰۰۰ باید باشد

(نقاط بحرانی این آزمون تا حجم نمونه ۵۰۰۰ محاسبه شده است).

نکته: گاهی این مطلب به چشم می خورد که گفته می شود آزمون شاپیرو – ویلک برای

نمونه های کمتر از ۵۰ بسیار مناسب است. توان این آزمون با افزایش حجم نمونه افزایش می باید

و برعکس این مطلب، در تعداد نمونه کم، این آزمون توان قابل قبولی ندارد.

نقاط بحرانی این آزمون در ابتدا برای حجم نمونه تا ۵۰ (Shapiro and Wilk; 1965) و

در مقاله ای دیگر تا حجم نمونه ۵۰۰۰ محاسبه شده است. لذا در برخی از مقالات، توان این آزمون تا حجم نمونه ۵۰ مورد ارزیابی قرار گرفته و این گمان به وجود آمده که آزمون شاپیرو – ویلک برای نمونه کمتر از ۵۰ مناسب است.

نکته: مقایسه توان آزمون ها بستگی به شرایطی مثل چولگی و کشیدگی و حجم نمونه دارد

و در شرایط مختلف ممکن است کارایی آزمون ها با هم متفاوت باشد.

عموماً آزمون های نرمالیتی برای حجم نمونه بیشتر از ۲۰۰ توان معقولی دارند

به همین خاطر توصیه می شود اگر حجم نمونه کمتر از این مقدار باشد از روش های توصیفی استفاده شود.

نکته: آزمون کلوموگروف – اسمیرنوف به نقاط پرت حساسیت زیادی ندارد

ولی در مقابل آزمون شاپیرو – ویلک به داده های پرت حساس است.

نکته: در نرم افزار SPSS دو آزمون شاپیرو – ویلک و آزمون کلوموگروف – اسمیرنوف قابل انجام است

و در نرم افزار Minitab نیز علاوه بر این دو آزمون، امکان انجام آزمون اندرسون – دارلینگ وجود دارد.

در نرم افزار R نیز در بسته stats دو آزمون کلوموگروف – اسمیرنوف

و شاپیرو – ویلک قابل انجام است

و در بسته nortest آزمون های اندرسون – دارلینگ،

لیلیفورس (حالت اصلاح شده آزمون کلوموگروف برای آزمون نرمالیتی)،

کای دو پیرسون، شاپیرو – فرانسیا و آزمون کرامر – وان–میسز قابل انجام است.

در بسته fBasics نیز امکان انجام آزمون های جارکو – برا و دی آگوستینو وجود دارد.

برگرفته از آمار ایران

برای مشاهده لیست همه ی  پرسشنامه های استاندارد لطفا همین جا روی پرسشنامه استاندارد  کلیک فرمایید.

تحلیل داده های آماری برای پایان نامه و مقاله نویسی ،تحلیل داده های آماری شما با نرم افزارهای کمی و کیفی ،مناسب ترین قیمت و کیفیت عالی انجام می گیرد.

نرم افزار های کمی: SPSS- PLS – Amos

نرم افزار کیفی: Maxquda

تعیین حجم نمونه با:Spss samplepower

روش های تماس:

Mobile :  09143444846  واتساپ – تلگرام

Telegram: @abazizi

وبلاگ ما

برای تحلیل داده های آماری با کیفیت بالا و قیمت مناسب همین جا  کلیک کن.

ترس از سگ

انواع روش های تحلیل آماری در پایان نامه و مقاله نویسی

مقاله هاي علمي-پژوهشي را با روش ها و آزمون هاي آماري مورد استفاده مي شناسند

و ديگر گرد هم آوردن مطالب نويسندگان مختلف ارزش علمي و پژوهشي ندارد. علم آمار با…

پردازش داده ها و تبديل آنها به اطلاعات مورد نياز، زمينه اخذ تصميم را فراهم مي آورد. هنر مديران و کارشناسان در نحوه استفاده از روشهاي آماري و تحليل اطلاعات به دست آمده تجلي پيدا مي کند.

امروزه بندرت مي توان بدون استفاده از روشهاي آماري اقدام به تفسير، تبيين و تحليل نتايج به دست آمده از تحقيق ها و پژوهش هاي علمي کرد .

آمار در دو شاخه آمار توصيفي و احتمالات و آمار استنباطي بحث و بررسي مي شود. احتمالات و تئوريهاي احتمال اساسا از دايره بحث ما خارج است. همچنين آمار توصيفي مانند فراواني، ميانگين، واريانس و … نيز مفروض در نظر گرفته شده اند. در اين مقاله با تاکيد بر فنون و روش هاي آماري استنياطي، کاربرد آمار در مقاله هاي علمي-پژوهشي ارائه خواهد شد.

آمار استنباطي و آمار توصيفي

در يک پژوهش جهت بررسي و توصيف ويژگيهاي عمومي پاسخ دهندگان از روش هاي موجود در آمار توصيفي مانند جداول توزيع فراواني، در صد فراواني، درصد فراواني تجمعي و ميانگين استفاده ميگردد. بنابراين هدف آمار توصيفي يا descriptive محاسبه پارامترهاي جامعه با استفاده از سرشماري تمامي عناصر جامعه است.

در آمار استنباطي يا inferential پژوهشگر با استفاده مقادير نمونه آماره ها را محاسبه کرده و سپس با کمک تخمين و يا آزمون فرض آماري، آماره ها را به پارامترهاي جامعه تعميم مي دهد.براي تجزيه و تحليل داده ها و آزمون فرضيه هاي پژوهش از روش هاي آمار استنباطي استفاده مي شود.

پارامتر شاخص بدست آمده از جامعه آماري با استفاده از سرشماري است و شاخص بدست آمده از يک نمونه n تائي از جامعه آماره ناميده مي شود. براي مثال ميانگين جامعه يا µ يک پارامتر مهم جامعه است. چون ميانگين جامعه هميشه در دسترس نيست به همين خاطر از ميانگين نمونه که آماره برآورد کننده پارامتر µ است در بسياري موارد استفاده مي شود.

آزمون آماري و تخمين آماري

در يک مقاله پژوهشي يا يک پايان نامه بايد سوال پژوهش يا فرضيه پژوهش مطرح شود. اگر تحقيق از نوع سوالي و صرفا حاوي پرسش درباره پارامتر باشد، براي پاسخ به سوالات از تخمين آماري استفاده مي شود و اگر حاوي فرضيه ها بوده و از مرحله سوال گذر کرده باشد، آزمون فرضيه ها و فنون آماري آن به کار مي رود.

هر نوع تخمين يا آزمون فرض آماري با تعيين صحيح آماره پژوهش شروع مي شود. سپس بايد توزيع آماره مشخص شود. براساس توزيع آماره آزمون با استفاده از داده هاي بدست آمده از نمونه محاسبه شده آماره آزمون محاسبه مي شود. سپس مقدار بحراني با توجه به سطح خطا و نوع توزيع از جداول مندرج در پيوست هاي کتاب آماري محاسبه مي شود. در نهايت با مقايسه آماره محاسبه شده و مقدار بحراني سوال يا فرضيه تحقيق بررسي و نتايج تحليل مي شود. در ادامه اين بحث موشکافي مي شود.

آزمون هاي آماري پارامتريک و ناپارامتريک

آمار پارامتريک که در خلال جنگ جهاني دوم شکل گرفت در برابر آمار پارامتريک قرار مي گيرد. آمار پارامتريک مستلزم پيش فرضهائي در مورد جامعه اي که از آن نمونه گيري صورت گرفته مي باشد. به عنوان مهمترين پيش فرض در آمار پارامترک فرض مي شود که توزيع جامعه نرمال است اما آمار ناپارامتريک مستلزم هيچگونه فرضي در مورد توزيع نيست. به همين خاطر بسياري از تحقيقات علوم انساني که با مقياس هاي کيفي سنجيده شده و فاقد توزيع (Free of distribution) هستند از شاخصهاي آمارا ناپارامتريک استفاده مي کنند.

فنون آمار پارامتريک شديداً تحت تاثير مقياس سنجش متغيرها و توزيع آماري جامعه است. اگر متغيرها از نوع اسمي و ترتيبي بوده حتما از روشهاي ناپارامتريک استفاده مي شود. اگر متغيرها از نوع فاصله اي و نسبي باشند در صورتيکه فرض شود توزيع آماري جامعه نرمال يا بهنجار است از روشهاي پارامتريک استفاده مي شود در غيراينصورت از روشهاي ناپارامتريک استفاده مي شود.

خلاصه آزمونهاي پارامتريک

آزمون t تك نمونه : براي آزمون فرض پيرامون ميانگين يک جامعه استفاده مي شود. در بيشتر پژوهش هائي که با مقياس ليکرت انجام مي شوند جهت بررسي فرضيه هاي پژوهش و تحليل سوالات تخصصي مربوط به آنها از اين آزمون استفاده مي شود.

آزمون t وابسته : براي آزمون فرض پيرامون دو ميانگين از يک جامعه استفاده مي شود. براي مثال اختلاف ميانگين رضايت کارکنان يک سازمان قبل و بعد از تغيير مديريت يا زماني که نمرات يک کلاس با پيش آزمون و پس آزمون سنجش مي شود.

آزمون t دو نمونه مستقل: جهت مقايسه ميانگين دو جامعه استفاده مي شود. در آزمون t براي دو نمونه مستقل فرض مي شود واريانس دو جامعه برابر است. براي نمونه به منظور بررسي معني دار بودن تفاوت ميانگين نمره نظرات پاسخ دهندگان بر اساس جنسيت در خصوص هر يک از فرضيه هاي پژوهش استفاده ميشود.

آزمون t ولچ: اين آزمون نيز مانند آزمون t دو نمونه جهت مقايسه ميانگين دو جامعه استفاده مي شود. در آزمون t ولچ فرض مي شود واريانس دو جامعه برابر نيست. براي نمونه به منظور بررسي معني دار بودن تفاوت ميانگين نمره نظرات پاسخ دهندگان بر اساس جنسيت در خصوص هر يک از فرضيه هاي پژوهش استفاده ميشود.

آزمون t هتلينگ : براي مقايسه چند ميانگين از دو جامعه استفاده مي شود. يعني دو جامعه براساس ميانگين چندين صفت مقايسه شوند.

تحليل واريانس (ANOVA): از اين آزمون به منظور بررسي اختلاف ميانگين چند جامعه آماري استفاده مي شود. براي نمونه جهت بررسي معني دار بودن تفاوت ميانگين نمره نظرات پاسخ دهندگان بر اساس سن يا تحصيلات در خصوص هر يک از فرضيه هاي پژوهش استفاده مي شود.

تحليل واريانس چندعاملي (MANOVA): از اين آزمون به منظور بررسي اختلاف چند ميانگين از چند جامعه آماري استفاده مي شود.

تحليل کوواريانس چندعاملي (MANCOVA): چنانچه در MANOVA بخواهيم اثر يک يا چند متغير کمکي را حذف کنيم استفاده مي شود.

ضريب همبستگي گشتاوري پيرسون: براي محاسبه همبستگي دو مجموعه داده استفاده مي شود.

5خلاصه آزمونهاي ناپارامتريک

آزمون علامت تك نمونه : براي آزمون فرض پيرامون ميانگين يک جامعه استفاده مي شود.

آزمون علامت زوجي : براي آزمون فرض پيرامون دو ميانگين از يک جامعه استفاده مي شود.

ويلکاکسون : همان آزمون علامت زوجي است که در آن اختلاف نسبي تفاوت از ميانگين لحاظ مي شود.

مان-ويتني: به آزمون U نيز موسوم است و جهت مقايسه ميانگين دو جامعه استفاده مي شود.

کروسکال-واليس: از اين آزمون به منظور بررسي اختلاف ميانگين چند جامعه آماري استفاده مي شود. به آزمون H نيز موسوم است و تعميم آزمون U مان-ويتني مي باشد. آزمون کروسکال-واليس معادل روش پارامتريک آناليز واريانس تک عاملي است.

فريدمن: اين آزمون معادل روش پارامتريک آناليز واريانس دو عاملي است که در آن k تيمار به صورت تصادفي به n بلوک تخصيص داده شده اند.

نيکوئي برازش : براي مقايسه يک توزيع نظري با توزيع مشاهده شده استفاده مي شود و به آزمون خي-دو يا χ² نيز موسوم است. مدل معادلات ساختاري که در آن پژوهشگر يک مدل نظري را براساس روابط متغيرها ترسيم کرده است از همين ازمون بهره گرفته مي شود. اکنون به تبع افزايش توانمندي نرم افزارهايي مانند LISREL مي توان از آن به سهولت استفاده کرد.

کولموگروف-اسميرنف : نوعي آزمون نيکوئي برازش براي مقايسه يک توزيع نظري با توزيع مشاهده شده است.

آزمون تقارن توزيع : در اين آزمون شکل توزيع مورد سوال قرار مي گيرد. فرض بديل آن است که توزيع متقارن نيست.

آزمون ميانه : جهت مقايسه ميانه دو جامعه استفاده مي شود و براي k جامعه نيز قابل تعميم است.

مک نمار : براي بررسي مشاهدات زوجي درباره متغيرهاي دو ارزشي استفاده مي شود.

آزمون Q کوکران: تعميم آزمون مک نمار در k نمونه وابسته است.

ضريب همبستگي اسپيرمن: براي محاسبه همبستگي دو مجموعه داده که به صورت ترتيبي قرار دارند استفاده مي شود.

منابع

· آذر، عادل(1384) آمار و کاربرد آن در مديريت، جلد اول، انتشارات سمت، تهران، چاپ دوازدهم .

· آذر، عادل(1386) آمار و کاربرد آن در مديريت، جلد دوم، انتشارات سمت، تهران، چاپ يازدهم.

· حبيبي، آرش(1385) بکارگيري نرم افزار CRM در شرکت ذوب آهن، پايان نامه کارشناسي ارشد.

· سرمد، زهره و ديگران(1378) روش هاي تحقيق در علوم رفتاري، انتشارات آگاه، تهران، چاپ دوم.

· فرجي، نصرالله (1386) آمار علوم انساني براي آمادگي داوطلبان کنکور کارشناسي ارشد، انتشارات پوران پژوهش.

شاخص های برازش مدل

از آنجایی که موضوع برازش مدل مفهومی و شاخص هایی که به بهترین نحو توانایی تفسیر بهتر برازش مدل را داشته باشند بسیار متنوع و پیچیده شده است و محققان با نوعی سردرگمی مواجه هستند.در این پژوهش از پرکاربردترین و مناسب ترین شاخص های برازش مدل استفاده کرده ایم.در ایتدای امر در هر مورد توضیحی مختصر داده شده و دامنه پذیرش آن نیز بیان شده است.

در حالت کلی ۲ نوع شاخص برازش وجود دارد که هر کدام از آنها دارای زیر شاخص هایی هستند.

شاخص های اصلی عبارتند از :

الف) شاخص های برازش مطلق

ب) شاخص های برازش مقایسه ای یا نسبی

شاخص های اندازه گیری مطلق از اساسی ترین و اصلی ترین معیارها برای صحت و سقم برازش داده ها بر اساس مدل یا فرضیات پیشنهاد شده می باشند که بر مبنای تفاوت میان واریانس ها و کوواریانس های دو مدل مشاهده شده و تدوین شده اندازه گیری می شود ؛ هرچه تعداد پارامترهای مدل بیشتر باشد، شاخص های برازش مطلق بهبود خواهند یافت و به سمت مدل اشباع شده(برازش کامل) نزدیکتر می شود.

الف  ۱ ) کای اسکوئر(مجذور کای) و نسبت کای اسکوئر به درجه آزادی

شاخص کای اسکوئر برای ارزیابی برازش کلی مدل و تعیین میزان شدت اختلاف بین ماتریس های کوواریانس برآورد شده و مشاهده شده تعریف می شود(Hu & Bentler,1992:2).در واقع برای این شاخص باید مقدار سطح معناداری بیشتر از ۰٫۰۵ باشد(p-value>0.05)

این شاخص معایبی از جمله وابستگی زیاد به حجم نمونه ( با افزایش نمونه برازش مناسب تری نشان می دهد)،وابستگی به نرمال بودن چند متغیره متغیرهای مشاهده شده(در صورت نرمال نبودن، موجب رد مدلهای خوب می شود) ، و تاثیر میزان همبستگی بین متغیرهای مدل بر این شاخص(با افزایش همبستگی متغیرها شاخص کای اسکوئر برازش  ضعیفتری نشان می دهد) دارد و همین امر موجب شده محققان شاخص نسبت کای اسکوئر بر در جه آزادی برای ارزیابی برازش خوب یا ضعیف مدل معرفی کنند که به حجم نمونه حساس نباشد.برخی از محققین مقدار بسیار بالای ۵ را برای این شاخص متناسب دیده اند(Wheaton et al,1977) برخی مقدار کمتر از ۲ (Tabachnick & Fidell, 2007) و ۱ تا ۳ (Kline, 2005;2011) را بعنوان بهترین نسبت برای این شاخص در نظر گرفته اند.ضمنا مقدار ۱ نشان دهنده برازش کامل مدل(مدل اشباع شده ) می باشد.

الف  ۲ ) نیکویی برازش (GFI) و نیکویی برازش اصلاح شده (AGFI)

این دو شاخص که به حجم نمونه بستگی ندارد و نسبت واریانس باز تولید شده را به کمک برآورد مقدار کوواریانس مشاهده شده محاسبه می کند(Tabachnick & Fidell, 2007  )

مقدار GFI بیانگر میزان دقت مدل در تکرار ماتریس کوواریانس مشاهده شده است.این معیار به شدت تحت تاثیر تعداد پارامترهای مدل می باشد و با افزایش آن ، مقدار GFI افزایش می یابد(MacCallum & Hong, 1997) .برای این شاخص مقادیر بالای ۹/۰ را جهت مناسبت مدل پیشنهاد کرده اند.

همچنین شاخص AGFI که مرتبط به مقدار GFI می باشد، شاخص است که  GFIرا بر اساس میزان درجه آزادی مدل تنظیم می نمایددر واقع هدف این معیار جریمه نمودن مدل به ازای افزایش تعداد پارامترهای جدید به مدل است، بطوریکه اضافه کردن تعداد پارامترهای جدید به مدل تاثیر مثبت بسیار کمی در بهبود برازش مدل دارد(Hoyle,2012:215). همچنین این معیار با افزایش حجم نمونه افزایش نمی یابد و دامنه مورد پذیرش آن مانند شاخص  GFIمقادیر بالای ۹/۰ می باشد(Hooper et al.,2008)

الف  ۳ ) ریشه میانگین مربعات باقی مانده(RMR) و ریشه میانگین مربعات باقی مانده استاندارد شده (SRMR)

شاخص RMR یکی از شاخص هایی است که بد بودن مدل تجربی را نشان می دهد هر دو شاخص RMR و SRMR ریشه مربعات حاصل از تفاوت بین ماتریس کوواریانس نمونه باقی مانده و مدل کوواریانس فرض شده می باشد که برای مقایسه برازش دو مدل متفاوت با داده های یکسان مورد استفاده قرار مورد استفاده قرار می گیرد.

اگر در پرسشنامه ای از طیف های لیکرت متفاوت( ۵ تایی و ۷ تایی) استفاده شده باشد شاخص RMR اعتبار چندانی ندارد (Kline,2005).شاخص SRMR این مشکل را برطرف کرده و در این گونه موارد استفاده از این شاخص اعتبار بالایی دارد(Hooper et al.,2008 ).شاخص SRMR بین ۰ تا ۱ تغییر می کند که برای مدلهایی با برازش خوب این مقدار زیر ۰٫۰۵ است (Byrne,1998;Hooper et al,2008).همچنین مقادیر زیر ۰٫۰۸نیز مورد پذیرش می باشند(Bentler,1999;Kline,2011)

همچنین معیار های ترکیبی شاخص SRMR و شاخص های NNFI ,RMSEA و CFI در جدول زیر آورده ایم.

ترکیب شاخص های برازشمقدار پذیرش ترکیبی
SRMR و NNFIمقادیر بالاتر برای شاخص NNFI و مقادیر ۰۸/۰ یا کمتر برای SRMR
SRMR و RMSEAمقادیر ۰۶/۰ یا کمتر برای شاخص RMSEA و مقادیر ۰۸/۰ یا کمتر برای SRMR
SRMR و CFIمقادیر ۹۵/۰ یا بالاتر برای شاخص CFI و مقادیر ۰۸/۰ یا کمتر برای شاخص SRMR

الف  ۴ ) ریشه میانگین مربعات خطای برآورد(RMSEA)

این شاخص یکی از اصلی ترین شاخص های برازش مدل در تحلیل مدل سازی معادلات ساختاری با نرم افزار LISREL می باشد که میزان بد بودن مدل برازش شده را در مقایسه با مدل اشباع شده برآورد می نماید(Ullman, 2006:44) و همانند شاخص SRMR مقدار کم این شاخص نشان دهنده برازش خوب مدل است.در سالهای اخیر مقادیر زیر ۰۶/۰ ( Hu & Bentler,1999) یا حتی مقادیر زیر ۰۷/۰ (Steiger,2007) و در سخت گیرانه ترین حالت دامنه بین ۰ تا  ۰۵/۰  بعنوان دامنه پذیرش برازش خوب مدل در نظر گرفته شده است و مقادیر بالای ۱/۰ نشان دهنده برازش ضعیف مدل می باشد(Hoyle,2012;Browne & Cudeck,1993).مقدار این شاخص از فرمول زیر محاسبه می شود:

نکته:

در مواردی که تعداد نمونه موجود در پژوهش کمتر از ۱۵۰ باشد، RMSEA شاخص مناسبی برای ارزیابی بد بودن مدل نیست ، چون در این حالت این شاخص بسیار بالا محاسبه می شود و برای حل این مشکل باید به مقدار CFI مراجعه شود ، چنانچه این مقدار بیشتر از ۹۵/۰ باشد، می توان به برازش خوب مدل توجه نمود و از کنار شاخص RMSEA گذشت(Ullman, 2006:44)

ب) شاخص های برازش مقایسه ای یا نسبی

شاخص های برازش نسبی ، شامل گروهی از شاخص ها می شوند که مقادیر کای اسکوئر را با مدل پایه ای مقایسه می نماید در واقع این شاخص ها بدنبال مقایسه بین یک مدل خاص با سایر مدلهای ممکن می پردازد.

ب  ۱ ) شاخص نرم شده برازندگی( NFI) و شاخص نرم نشده برازندگی(  NNFI)

دامنه پذیرش این شاخص در بین مقادیر ۰ تا ۱ توسط

ب  ۲ ) شاخص برازندگی فزاینده ( IFI)

ب  ۳ ) شاخص برازندگی تطبیقی ( CFI)

شاخص های برازش مدل

از آنجایی که موضوع برازش مدل مفهومی و شاخص هایی که به بهترین نحو توانایی تفسیر بهتر برازش مدل را داشته باشند بسیار متنوع و پیچیده شده است و محققان با نوعی سردرگمی مواجه هستند.در این پژوهش از پرکاربردترین و مناسب ترین شاخص های برازش مدل استفاده کرده ایم.در ایتدای امر در هر مورد توضیحی مختصر داده شده و دامنه پذیرش آن نیز بیان شده است.

در حالت کلی ۲ نوع شاخص برازش وجود دارد که هر کدام از آنها دارای زیر شاخص هایی هستند.

شاخص های اصلی عبارتند از :

الف) شاخص های برازش مطلق

ب) شاخص های برازش مقایسه ای یا نسبی

شاخص های اندازه گیری مطلق از اساسی ترین و اصلی ترین معیارها برای صحت و سقم برازش داده ها بر اساس مدل یا فرضیات پیشنهاد شده می باشند که بر مبنای تفاوت میان واریانس ها و کوواریانس های دو مدل مشاهده شده و تدوین شده اندازه گیری می شود ؛ هرچه تعداد پارامترهای مدل بیشتر باشد، شاخص های برازش مطلق بهبود خواهند یافت و به سمت مدل اشباع شده(برازش کامل) نزدیکتر می شود.

الف  ۱ ) کای اسکوئر(مجذور کای) و نسبت کای اسکوئر به درجه آزادی

شاخص کای اسکوئر برای ارزیابی برازش کلی مدل و تعیین میزان شدت اختلاف بین ماتریس های کوواریانس برآورد شده و مشاهده شده تعریف می شود(Hu & Bentler,1992:2).در واقع برای این شاخص باید مقدار سطح معناداری بیشتر از ۰٫۰۵ باشد(p-value>0.05)

این شاخص معایبی از جمله وابستگی زیاد به حجم نمونه ( با افزایش نمونه برازش مناسب تری نشان می دهد)،وابستگی به نرمال بودن چند متغیره متغیرهای مشاهده شده(در صورت نرمال نبودن، موجب رد مدلهای خوب می شود) ، و تاثیر میزان همبستگی بین متغیرهای مدل بر این شاخص(با افزایش همبستگی متغیرها شاخص کای اسکوئر برازش  ضعیفتری نشان می دهد) دارد و همین امر موجب شده محققان شاخص نسبت کای اسکوئر بر در جه آزادی برای ارزیابی برازش خوب یا ضعیف مدل معرفی کنند که به حجم نمونه حساس نباشد.برخی از محققین مقدار بسیار بالای ۵ را برای این شاخص متناسب دیده اند(Wheaton et al,1977) برخی مقدار کمتر از ۲ (Tabachnick & Fidell, 2007) و ۱ تا ۳ (Kline, 2005;2011) را بعنوان بهترین نسبت برای این شاخص در نظر گرفته اند.ضمنا مقدار ۱ نشان دهنده برازش کامل مدل(مدل اشباع شده ) می باشد.

الف  ۲ ) نیکویی برازش (GFI) و نیکویی برازش اصلاح شده (AGFI)

این دو شاخص که به حجم نمونه بستگی ندارد و نسبت واریانس باز تولید شده را به کمک برآورد مقدار کوواریانس مشاهده شده محاسبه می کند(Tabachnick & Fidell, 2007  )

مقدار GFI بیانگر میزان دقت مدل در تکرار ماتریس کوواریانس مشاهده شده است.این معیار به شدت تحت تاثیر تعداد پارامترهای مدل می باشد و با افزایش آن ، مقدار GFI افزایش می یابد(MacCallum & Hong, 1997) .برای این شاخص مقادیر بالای ۹/۰ را جهت مناسبت مدل پیشنهاد کرده اند.

همچنین شاخص AGFI که مرتبط به مقدار GFI می باشد، شاخص است که  GFIرا بر اساس میزان درجه آزادی مدل تنظیم می نمایددر واقع هدف این معیار جریمه نمودن مدل به ازای افزایش تعداد پارامترهای جدید به مدل است، بطوریکه اضافه کردن تعداد پارامترهای جدید به مدل تاثیر مثبت بسیار کمی در بهبود برازش مدل دارد(Hoyle,2012:215). همچنین این معیار با افزایش حجم نمونه افزایش نمی یابد و دامنه مورد پذیرش آن مانند شاخص  GFIمقادیر بالای ۹/۰ می باشد(Hooper et al.,2008)

الف  ۳ ) ریشه میانگین مربعات باقی مانده(RMR) و ریشه میانگین مربعات باقی مانده استاندارد شده (SRMR)

شاخص RMR یکی از شاخص هایی است که بد بودن مدل تجربی را نشان می دهد هر دو شاخص RMR و SRMR ریشه مربعات حاصل از تفاوت بین ماتریس کوواریانس نمونه باقی مانده و مدل کوواریانس فرض شده می باشد که برای مقایسه برازش دو مدل متفاوت با داده های یکسان مورد استفاده قرار مورد استفاده قرار می گیرد.

اگر در پرسشنامه ای از طیف های لیکرت متفاوت( ۵ تایی و ۷ تایی) استفاده شده باشد شاخص RMR اعتبار چندانی ندارد (Kline,2005).شاخص SRMR این مشکل را برطرف کرده و در این گونه موارد استفاده از این شاخص اعتبار بالایی دارد(Hooper et al.,2008 ).شاخص SRMR بین ۰ تا ۱ تغییر می کند که برای مدلهایی با برازش خوب این مقدار زیر ۰٫۰۵ است (Byrne,1998;Hooper et al,2008).همچنین مقادیر زیر ۰٫۰۸نیز مورد پذیرش می باشند(Bentler,1999;Kline,2011)

همچنین معیار های ترکیبی شاخص SRMR و شاخص های NNFI ,RMSEA و CFI در جدول زیر آورده ایم.

ترکیب شاخص های برازشمقدار پذیرش ترکیبی
SRMR و NNFIمقادیر بالاتر برای شاخص NNFI و مقادیر ۰۸/۰ یا کمتر برای SRMR
SRMR و RMSEAمقادیر ۰۶/۰ یا کمتر برای شاخص RMSEA و مقادیر ۰۸/۰ یا کمتر برای SRMR
SRMR و CFIمقادیر ۹۵/۰ یا بالاتر برای شاخص CFI و مقادیر ۰۸/۰ یا کمتر برای شاخص SRMR

الف  ۴ ) ریشه میانگین مربعات خطای برآورد(RMSEA)

این شاخص یکی از اصلی ترین شاخص های برازش مدل در تحلیل مدل سازی معادلات ساختاری با نرم افزار LISREL می باشد که میزان بد بودن مدل برازش شده را در مقایسه با مدل اشباع شده برآورد می نماید(Ullman, 2006:44) و همانند شاخص SRMR مقدار کم این شاخص نشان دهنده برازش خوب مدل است.در سالهای اخیر مقادیر زیر ۰۶/۰ ( Hu & Bentler,1999) یا حتی مقادیر زیر ۰۷/۰ (Steiger,2007) و در سخت گیرانه ترین حالت دامنه بین ۰ تا  ۰۵/۰  بعنوان دامنه پذیرش برازش خوب مدل در نظر گرفته شده است و مقادیر بالای ۱/۰ نشان دهنده برازش ضعیف مدل می باشد(Hoyle,2012;Browne & Cudeck,1993).مقدار این شاخص از فرمول زیر محاسبه می شود:

نکته:

در مواردی که تعداد نمونه موجود در پژوهش کمتر از ۱۵۰ باشد، RMSEA شاخص مناسبی برای ارزیابی بد بودن مدل نیست ، چون در این حالت این شاخص بسیار بالا محاسبه می شود و برای حل این مشکل باید به مقدار CFI مراجعه شود ، چنانچه این مقدار بیشتر از ۹۵/۰ باشد، می توان به برازش خوب مدل توجه نمود و از کنار شاخص RMSEA گذشت(Ullman, 2006:44)

ب) شاخص های برازش مقایسه ای یا نسبی

شاخص های برازش نسبی ، شامل گروهی از شاخص ها می شوند که مقادیر کای اسکوئر را با مدل پایه ای مقایسه می نماید در واقع این شاخص ها بدنبال مقایسه بین یک مدل خاص با سایر مدلهای ممکن می پردازد.

ب  ۱ ) شاخص نرم شده برازندگی( NFI) و شاخص نرم نشده برازندگی(  NNFI)

دامنه پذیرش این شاخص در بین مقادیر ۰ تا ۱ توسط

ب  ۲ ) شاخص برازندگی فزاینده ( IFI)

ب  ۳ ) شاخص برازندگی تطبیقی ( CFI)