بایگانی دسته: آموزش آمار

انواع پرسشنامه استاتدارد تحنمکگ

آزمون کروسکال – والیس چیست؟

آزمون کروسکال – والیس چیست؟

آزمون کروسکال-والیس (Kruskal-Wallis test) یک آزمون آماری غیرپارامتریک است که برای مقایسه سه یا چند گروه مستقل استفاده می‌شود. این آزمون به‌ویژه در شرایطی که فرضیات آزمون‌های پارامتریک مانند ANOVA (تحلیل واریانس) برآورده نمی‌شود، کاربرد دارد.

اهداف آزمون کروسکال-والیس:

  • مقایسه چند گروه: این آزمون برای بررسی این که آیا حداقل یکی از گروه‌ها دارای میانگین رتبه‌ای متفاوت از سایر گروه‌ها است، استفاده می‌شود.
  • تجزیه و تحلیل داده‌های غیرنرمال: در مواقعی که توزیع داده‌ها نرمال نیست یا واریانس‌ها نابرابرند، این آزمون گزینه‌ای مناسب است.

روش کار:

  1. جمع‌آوری داده‌ها: داده‌ها از سه یا چند گروه مستقل جمع‌آوری می‌شوند.
  2. رتبه‌بندی داده‌ها: تمام داده‌ها به صورت کلی رتبه‌بندی می‌شوند، به طوری که کوچک‌ترین مقدار رتبه 1 و بزرگ‌ترین مقدار رتبه بالاترین عدد را دریافت می‌کند.
  3. محاسبه آماره آزمون: برای هر گروه، مجموع رتبه‌ها محاسبه می‌شود و سپس آماره آزمون H محاسبه می‌شود:𝐻=12𝑁(𝑁+1)∑𝑅𝑗2𝑛𝑗−3(𝑁+1)که در آن:
    • 𝑁 تعداد کل مشاهدات
    • 𝑅𝑗 مجموع رتبه‌های گروه 𝑗
    • 𝑛𝑗 تعداد مشاهدات در گروه 𝑗
  4. آزمون فرض: مقدار محاسبه شده H با توزیع خی‌دو (Chi-square distribution) مقایسه می‌شود تا p-value به‌دست آید. بر اساس p-value می‌توان فرض صفر (عدم تفاوت میان گروه‌ها) یا فرض جایگزین (وجود تفاوت میان حداقل یکی از گروه‌ها) را ارزیابی کرد.

مزایا و معایب:

مزایا:

  • غیرپارامتریک: نیازی به فرضیات خاص درباره توزیع داده‌ها ندارد.
  • مناسب برای داده‌های رتبه‌ای: می‌تواند با داده‌های غیرمقیاس و رتبه‌ای کار کند.

معایب:

  • عدم ارائه اطلاعات دقیق درباره اینکه کدام گروه‌ها با یکدیگر متفاوت هستند. (برای این منظور می‌توان از آزمون‌های پس‌ازآن (post hoc) مانند آزمون مان-وایتنی (Mann-Whitney) استفاده کرد.)
  • حساسیت به اندازه نمونه: در نمونه‌های کوچک ممکن است نتایج غیرقابل اعتمادی ارائه دهد.

کاربردها:

آزمون کروسکال-والیس در بسیاری از زمینه‌ها از جمله علوم اجتماعی، پزشکی، و علوم زیستی برای مقایسه گروه‌ها و بررسی فرضیات آماری استفاده می‌شود.

آزمون ضریب همبستگی اسپیرمن (Spearman’s Rank Correlation Coefficient)

نوشته

سندروم بازماندگان محیط کار چیست؟

نوشته

شاخص h-index چیست؟

نوشته

آزمون علامت تک نمونه (Sign Test)

نوشته

خواص و مضرات گیاه داروئی آلوئه چیست؟

سفارش تحلیل داده های آماری برای پایان نامه و مقاله نویسی تحلیل داده های آماری شما با نرم افزارهای کمی و کیفی ،مناسب ترین قیمت و کیفیت عالی انجام می گیرد. نرم افزار های کمی: SPSS- PLS – Amos نرم افزارهای کیفی: Maxquda- NVivo تعیین حجم نمونه با:Spss samplepower Mobile : 09143444846 09143444846 Telegram: https://t.me/RAVA2020 E-mail: abazizi1392@gmail.com

تحلیل آماری - پژوهش - کیفی - کمی - کامپیوتر

آزمون کولموگرو اسمیرنف چیست؟

آزمون کولموگرو اسمیرنف چیست؟

آزمون کولموگرو-اسمیرنف (Kolmogorov-Smirnov test) یک آزمون آماری غیرپارامتریک است که برای مقایسه توزیع‌های دو مجموعه داده یا برای بررسی تطابق یک مجموعه داده با یک توزیع خاص استفاده می‌شود. این آزمون به ویژه در تحلیل داده‌های تجربی و در زمینه‌های مختلف علمی و مهندسی کاربرد دارد.

اهداف آزمون کولموگرو-اسمیرنف:

  1. مقایسه دو توزیع: این آزمون می‌تواند برای بررسی این که آیا دو نمونه مستقل از یک توزیع یکسان آمده‌اند یا خیر، استفاده شود.
  2. تطابق با توزیع خاص: همچنین می‌توان از آن برای بررسی این که آیا یک مجموعه داده با یک توزیع خاص (مثل توزیع نرمال) مطابقت دارد یا نه، استفاده کرد.

روش کار:

  • محاسبه تابع توزیع تجربی: برای هر مجموعه داده، تابع توزیع تجربی (Empirical Distribution Function – EDF) محاسبه می‌شود.
  • محاسبه فاصله: سپس فاصله ماکزیمم بین دو تابع توزیع تجربی (یا بین تابع توزیع تجربی و تابع توزیع نظری) محاسبه می‌شود.
  • آزمون فرض: با استفاده از این فاصله، مقدار p-value محاسبه می‌شود و بر اساس آن می‌توان فرض صفر (توزیع‌ها یکسان هستند) یا فرض جایگزین (توزیع‌ها یکسان نیستند) را ارزیابی کرد.

مزایا و معایب:

مزایا:

  • غیرپارامتریک: نیازی به فرضیات خاص درباره توزیع داده‌ها ندارد.
  • ساده و قابل فهم: روش محاسبه و تفسیر آن نسبتاً ساده است.

معایب:

  • حساسیت به اندازه نمونه: این آزمون ممکن است برای نمونه‌های کوچک نتایج دقیقی ارائه ندهد.
  • محدودیت در بررسی توزیع‌های چندمتغیره: معمولاً برای داده‌های یک‌بعدی استفاده می‌شود.

کاربردها:

آزمون کولموگرو-اسمیرنف در بسیاری از زمینه‌ها از جمله علوم اجتماعی، پزشکی، و مهندسی برای تحلیل داده‌ها و بررسی فرضیات آماری استفاده می‌شود.

توجه: اگر برای بررسی نرمالیتی توزیع داده ها از این آزمون استفاده می کنید، توجه داشته باشید حدکثر نمونه 30 مورد باشد و برای نمونه های بیشتر از 30 مورد مناسب نیست برای نرمالیتی نمونه های بالای 30 از کجی و چولگی استفاده کنید.

آزمون اپسیلون حد پایین یا Low -bound چیست؟

نوشته

آزمون آماری چیست؟

نوشته

چگونه نتایج آزمون آماری پیلایی یا “Pillai’s test” را تفسیر کنم؟

نوشته

مراحل آزمون تحلیل واریانس دو راهه (Two-Way ANOVA) در نرم افزار spss

نوشته

آزمون تحلیل واریانس سه‌راهه (Three-way ANOVA)

سفارش تحلیل داده های آماری برای پایان نامه و مقاله نویسی تحلیل داده های آماری شما با نرم افزارهای کمی و کیفی ،مناسب ترین قیمت و کیفیت عالی انجام می گیرد. نرم افزار های کمی: SPSS- PLS – Amos نرم افزارهای کیفی: Maxquda- NVivo تعیین حجم نمونه با:Spss samplepower Mobile : 09143444846 09143444846 Telegram: https://t.me/RAVA2020 E-mail: abazizi1392@gmail.com

تحلیل آماری عوامل دموگرافیک (جمعیت شناسی)

آزمون احتمال دقیق فیشر یا Fisher test

آزمون احتمال دقیق فیشر یا Fisher test

آزمون احتمال دقیق فیشر (Fisher’s Exact Test) یک آزمون آماری است که برای بررسی ارتباط بین دو متغیر کیفی (دسته‌ای) در جداول دو بعدی (معمولاً جداول 2×2) استفاده می‌شود. این آزمون به ویژه زمانی مفید است که اندازه نمونه کوچک باشد و شرایط آزمون‌های پارامتریک مانند آزمون کای-مربع (Chi-square test) برقرار نباشد.

ویژگی‌ها و کاربردها:

  • استفاده در جداول 2×2: آزمون فیشر به طور خاص برای جداول 2×2 طراحی شده است، اما می‌توان از آن در جداول بزرگ‌تر نیز استفاده کرد.
  • دقت بالا: این آزمون به دلیل استفاده از محاسبات دقیق، نتایج قابل اعتمادی را ارائه می‌دهد، به ویژه در نمونه‌های کوچک.
  • عدم نیاز به فرضیات توزیع: برخلاف آزمون‌های پارامتریک، آزمون فیشر به فرضیات توزیع خاصی نیاز ندارد و می‌تواند در شرایطی که داده‌ها نرمال نیستند، استفاده شود.

مراحل انجام آزمون احتمال دقیق فیشر:

  1. ساخت جدول دو بعدی: داده‌ها را در یک جدول 2×2 سازماندهی کنید. برای مثال:gherkin| | گروه 1 | گروه 2 | |-----------|--------|--------| | مورد مثبت| a | b | | مورد منفی| c | d |
  2. محاسبه احتمال: برای محاسبه احتمال دقیق فیشر، از فرمول زیر استفاده می‌شود: 𝑃=(𝑎+𝑏)!⋅(𝑐+𝑑)!⋅(𝑎+𝑐)!⋅(𝑏+𝑑)!𝑎!⋅𝑏!⋅𝑐!⋅𝑑!⋅𝑛! که در آن 𝑛=𝑎+𝑏+𝑐+𝑑 است.
  3. تعیین سطح معناداری: با استفاده از محاسبات احتمال، می‌توانید سطح معناداری آزمون را تعیین کنید. معمولاً از سطح معناداری 0.05 استفاده می‌شود. اگر احتمال محاسبه شده کمتر از 0.05 باشد، می‌توان نتیجه گرفت که ارتباط معناداری بین دو متغیر وجود دارد.

تفسیر نتایج:

  • اگر نتیجه آزمون نشان دهد که احتمال معناداری وجود دارد، می‌توان نتیجه گرفت که بین دو متغیر رابطه‌ای وجود دارد.
  • در غیر این صورت، نمی‌توان نتیجه‌گیری کرد که بین دو متغیر ارتباطی وجود ندارد.

مثال:

فرض کنید در یک مطالعه پزشکی، تعداد بیماران مبتلا به یک بیماری خاص در دو گروه درمانی مختلف ثبت شده است. با استفاده از آزمون فیشر، می‌توانید بررسی کنید که آیا نوع درمان تأثیری بر بهبودی بیماران دارد یا خیر.

نرم‌افزارها:

آزمون فیشر می‌تواند به راحتی با استفاده از نرم‌افزارهای آماری مانند R، Python، SPSS، و … انجام شود.

آزمون تحلیل عاملی یا Factor Analysis test چیست؟

آزمون های پارامتریک برای مقایسه

خواص و مضرات گیاه داروئی آلوئه چیست؟

آزمون آماری پیلای یا ( pillai’s test) چیست؟

کوتاه‌ترین تست هوش دنیا + پاسخ

تحلیل آماری statistical analysis

آزمون فریدمن (Friedman Test)

آزمون فریدمن (Friedman Test) یک آزمون غیرپارامتریک است که برای مقایسه سه یا چند گروه مرتبط استفاده می‌شود. این آزمون به ویژه زمانی کاربرد دارد که داده‌ها نرمال نیستند و نمی‌توان از آزمون‌های پارامتریک مانند ANOVA استفاده کرد. آزمون فریدمن به ما کمک می‌کند تا بفهمیم آیا حداقل یکی از گروه‌ها به طور معناداری با دیگر گروه‌ها متفاوت است یا خیر.

مراحل انجام آزمون فریدمن:

  1. جمع‌آوری داده‌ها: داده‌ها باید به صورت گروه‌های مرتبط جمع‌آوری شوند. به عنوان مثال، می‌توانید داده‌ها را از چندین زمان مختلف یا شرایط مختلف برای یک گروه از افراد جمع‌آوری کنید.
  2. رتبه‌بندی داده‌ها: برای هر گروه، داده‌ها را به ترتیب از کم به زیاد مرتب کنید و به آن‌ها رتبه بدهید. اگر داده‌ها تکراری باشند، می‌توانید میانگین رتبه‌ها را برای آن‌ها محاسبه کنید.
  3. محاسبه آماره آزمون: آماره آزمون فریدمن به صورت زیر محاسبه می‌شود: 𝜒𝐹2=12𝑛⋅𝑘⋅(𝑘+1)∑𝑗=1𝑘𝑅𝑗2−3𝑛(𝑘+1) که در آن:
    • 𝑛 تعداد مشاهدات در هر گروه
    • 𝑘 تعداد گروه‌ها
    • 𝑅𝑗 مجموع رتبه‌ها برای گروه 𝑗
  4. تعیین درجه آزادی: درجه آزادی آزمون فریدمن برابر است با 𝑘−1.
  5. مقایسه با توزیع خی‌دو: برای تعیین معناداری، آماره محاسبه شده را با توزیع خی‌دو (Chi-square distribution) با درجه آزادی 𝑘−1 مقایسه کنید.

تفسیر نتایج:

  • اگر مقدار محاسبه شده از آماره آزمون فریدمن بزرگتر از مقدار بحرانی در جدول خی‌دو باشد، می‌توان نتیجه گرفت که حداقل یکی از گروه‌ها به طور معناداری با دیگر گروه‌ها متفاوت است.
  • در غیر این صورت، نمی‌توان به این نتیجه رسید که گروه‌ها تفاوت معناداری دارند.

دانه ای که یبوست و افسردگی را رفع می کند و سرشار از امگا ۳، آنتی‌اکسیدان، پروتئین و فیبر خوراکی است

گروه بندی و توصیف آزمون های پارامتریک و ناپارامتریک برای بررسی رابطه بین متغیرها

دسته‌بندی روش‌های تحقیق بر اساس هدف :

آزمون کروسکال-والیس (Kruskal-Wallis H Test)

آزمون کوواریانس چند متغیره (مانکوا) چیست؟

سفارش تحلیل داده های آماری برای پایان نامه و مقاله نویسی تحلیل داده های آماری شما با نرم افزارهای کمی و کیفی ،مناسب ترین قیمت و کیفیت عالی انجام می گیرد. نرم افزار های کمی: SPSS- PLS – Amos نرم افزارهای کیفی: Maxquda- NVivo تعیین حجم نمونه با:Spss samplepower Mobile : 09143444846 09143444846 Telegram: https://t.me/RAVA2020 E-mail: abazizi1392@gmail.com
تحلیل آماری statistical analysis

آزمون علامت زوجی چیست؟ ( paired sign test)

آزمون علامت زوجی چیست؟ ( paired sign test)

«آزمون نشانه‌های جفت شده» (paired-samples sign test) که معمولاً به «آزمون علامت» یا آزمون معروف است، برای تعیین وجود تفاوت میانه بین مشاهدات جفتی یا همسان (paired or matched observations.) ، استفاده می‌شود.

تحلیل آماری عوامل دموگرافیک (جمعیت شناسی)

آزمون علامت تک نمونه (Sign Test)

آزمون علامت تک نمونه (Sign Test)

آزمون علامت تک نمونه چیست؟

آزمون علامت تک نمونه (Sign Test) یک آزمون غیرپارامتریک است که برای مقایسه یک نمونه با یک مقدار مشخص (معمولاً میانگین یا میانه) استفاده می‌شود. این آزمون به ویژه در شرایطی مفید است که داده‌ها نرمال نیستند یا توزیع آن‌ها نامشخص است.

مراحل انجام آزمون علامت تک نمونه:

  1. تعریف فرضیات:
    • فرض صفر (H0): میانگین یا میانه جامعه برابر با یک مقدار مشخص (مثلاً μ = μ0).
    • فرض جایگزین (H1): میانگین یا میانه جامعه با آن مقدار مشخص متفاوت است (مثلاً μ ≠ μ0).
  2. جمع‌آوری داده‌ها:
    • یک نمونه از داده‌ها را جمع‌آوری کنید و مقدار مشخص (μ0) را تعیین کنید.
  3. محاسبه علامت‌ها:
    • برای هر داده، علامت تفاوت آن با مقدار مشخص را محاسبه کنید. اگر داده بزرگ‌تر از μ0 باشد، علامت مثبت (+) و اگر کوچک‌تر باشد، علامت منفی (-) می‌گیرد. داده‌هایی که برابر با μ0 هستند، نادیده گرفته می‌شوند.
  4. محاسبه تعداد علامت‌ها:
    • تعداد علامت‌های مثبت و منفی را شمارش کنید.
  5. استفاده از توزیع بینه:
    • با توجه به تعداد کل مشاهدات (N) و تعداد علامت‌های مثبت (P)، می‌توانید از توزیع بینه برای محاسبه احتمال‌ها استفاده کنید.
  6. تعیین سطح معنی‌داری:
    • با استفاده از جدول توزیع بینه یا نرم‌افزارهای آماری، می‌توانید مقدار p-value را محاسبه کنید و آن را با سطح معنی‌داری (α) مقایسه کنید.
  7. نتیجه‌گیری:
    • اگر p-value کمتر از α باشد، فرض صفر را رد کرده و نتیجه می‌گیریم که میانگین یا میانه جامعه با مقدار مشخص متفاوت است.

مزایا و معایب آزمون علامت تک نمونه:

مزایا:

  • نیازی به فرض نرمال بودن داده‌ها ندارد.
  • در مواردی که داده‌ها مقیاس رتبه‌ای یا اسمی هستند، قابل استفاده است.

معایب:

  • قدرت آزمون نسبت به آزمون‌های پارامتریک کمتر است.
  • فقط اطلاعاتی درباره علامت‌ها (مثبت یا منفی) ارائه می‌دهد و از مقادیر دقیق داده‌ها استفاده نمی‌کند.

آزمون علامت تک نمونه به‌ویژه در علوم اجتماعی و پزشکی برای تحلیل داده‌های غیرنرمال و مقایسه با مقادیر مشخص کاربرد دارد.

مدیریت به روش ایلان ماسک

نوشته

گروه بندی و توصیف آزمون های پارامتریک و ناپارامتریک برای بررسی رابطه بین متغیرها

نوشته

صفحه روی جلد پایان نامه شامل چه مواردی می شود؟

نوشته

آزمون ری برگمن (Roy-Bargman test)

نوشته

 آزمون مان-ویتنی (Mann-Whitney U Test)

سفارش تحلیل داده های آماری برای پایان نامه و مقاله نویسی تحلیل داده های آماری شما با نرم افزارهای کمی و کیفی ،مناسب ترین قیمت و کیفیت عالی انجام می گیرد. نرم افزار های کمی: SPSS- PLS – Amos نرم افزارهای کیفی: Maxquda- NVivo تعیین حجم نمونه با:Spss samplepower Mobile : 09143444846 09143444846 Telegram: https://t.me/RAVA2020 E-mail: abazizi1392@gmail.com
تحلیل آماری statistical analysis

آزمون ضریب همبستگی چند گانه چیست؟ Multiple Correlation Coefficient

آزمون ضریب همبستگی چند گانه چیست؟ Multiple Correlation Coefficient

آزمون ضریب همبستگی چندگانه (Multiple Correlation Coefficient) یک روش آماری است که برای بررسی رابطه بین یک متغیر وابسته و چندین متغیر مستقل استفاده می‌شود. این آزمون به ما کمک می‌کند تا بفهمیم چگونه متغیرهای مستقل به طور همزمان بر روی متغیر وابسته تأثیر می‌گذارند و چه میزان از تغییرات متغیر وابسته می‌تواند توسط این متغیرهای مستقل توضیح داده شود.

نکات کلیدی درباره آزمون ضریب همبستگی چندگانه:

  1. تعریف:
    • ضریب همبستگی چندگانه، که معمولاً با نماد 𝑅 نمایش داده می‌شود، نشان‌دهنده قدرت و جهت رابطه بین یک متغیر وابسته و مجموعه‌ای از متغیرهای مستقل است.
  2. محاسبه:
    • برای محاسبه ضریب همبستگی چندگانه، ابتدا یک مدل رگرسیون چندگانه ایجاد می‌شود. سپس با استفاده از داده‌های موجود، ضریب همبستگی محاسبه می‌شود.
  3. مقدار R:
    • مقدار 𝑅 بین 0 و 1 قرار دارد. مقدار نزدیک به 1 نشان‌دهنده همبستگی قوی و مثبت است، در حالی که مقدار نزدیک به 0 نشان‌دهنده عدم همبستگی است.
  4. تجزیه و تحلیل و تفسیر:
    • علاوه بر ضریب همبستگی، معمولاً از ضریب تعیین (𝑅2) نیز استفاده می‌شود که نشان‌دهنده درصد تغییرات متغیر وابسته است که توسط متغیرهای مستقل توضیح داده می‌شود.
  5. آزمون فرضیات:
    • در تحلیل همبستگی چندگانه، فرضیات خاصی باید بررسی شوند، از جمله نرمال بودن توزیع متغیرها، عدم وجود چندخطی بودن (multicollinearity) بین متغیرهای مستقل و وجود رابطه خطی.

کاربردها:

  • این آزمون در زمینه‌های مختلفی مانند اقتصاد، روانشناسی، علوم اجتماعی و پزشکی برای بررسی تأثیرات چندگانه متغیرها بر یک نتیجه خاص استفاده می‌شود.

نتیجه‌گیری:

آزمون ضریب همبستگی چندگانه ابزاری قدرتمند برای تحلیل روابط پیچیده بین متغیرها است و می‌تواند بینش‌های ارزشمندی در مورد نحوه تأثیرگذاری متغیرهای مختلف بر یکدیگر ارائه دهد.

علت سوزش کف پا چیست؟

نوشته

سوالات کاربر و فروشنده گیاهان دارویی ۱۴۰۳【اصل سوالات آزمون با جواب 】+ چندین نمونه سوال استاندارد دیگر

نوشته

آزمون ضریب همبستگی اسپیرمن (Spearman’s Rank Correlation Coefficient)

نوشته

شاخص h-index چیست؟

نوشته

تجزیه و تحلیل خوشه ای چیست؟

تحلیل آماری عوامل دموگرافیک (جمعیت شناسی)

آزمون ضریب همبستگی اسپیرمن (Spearman’s Rank Correlation Coefficient)

آزمون ضریب همبستگی اسپیرمن (Spearman’s Rank Correlation Coefficient) یکی از روش‌های آماری است که برای بررسی رابطه بین دو متغیر استفاده می‌شود. این آزمون به‌ویژه زمانی مفید است که داده‌ها نرمال نیستند یا رابطه‌ای غیرخطی بین دو متغیر وجود دارد. ضریب همبستگی اسپیرمن به‌جای استفاده از مقادیر واقعی داده‌ها، از رتبه‌های آن‌ها استفاده می‌کند.

مراحل انجام آزمون ضریب همبستگی اسپیرمن:

  1. جمع‌آوری داده‌ها: داده‌های مربوط به دو متغیر را جمع‌آوری کنید. این داده‌ها باید به صورت جفتی (x, y) باشند.
  2. رتبه‌بندی داده‌ها:
    • برای هر متغیر، مقادیر را به ترتیب صعودی یا نزولی مرتب کنید و به هر مقدار یک رتبه اختصاص دهید.
    • در صورتی که مقادیر تکراری وجود داشته باشد، میانگین رتبه‌ها به آن مقادیر اختصاص داده می‌شود.
  3. محاسبه ضریب همبستگی اسپیرمن: پس از رتبه‌بندی، می‌توانید ضریب همبستگی اسپیرمن را با استفاده از فرمول زیر محاسبه کنید:𝑟𝑠=1−6∑𝑑𝑖2𝑛(𝑛2−1)در این فرمول:
    • 𝑟𝑠 ضریب همبستگی اسپیرمن است.
    • 𝑛 تعداد داده‌هاست.
    • 𝑑𝑖 تفاوت بین رتبه‌های هر جفت داده (رتبه x و رتبه y) است.
  4. تفسیر نتایج:
    • اگر 𝑟𝑠=1: رابطه مثبت کامل وجود دارد.
    • اگر 𝑟𝑠=−1: رابطه منفی کامل وجود دارد.
    • اگر 𝑟𝑠=0: هیچ رابطه‌ای وجود ندارد.
    • مقادیر بین 0 و 1 یا -1 و 0 نشان‌دهنده رابطه‌های ضعیف تا متوسط هستند.
  5. آزمون فرضیه: برای بررسی معناداری ضریب همبستگی اسپیرمن، می‌توانید از آزمون‌های آماری مانند آزمون t استفاده کنید. فرضیات به صورت زیر هستند:
    • فرض صفر (𝐻0): هیچ رابطه‌ای بین دو متغیر وجود ندارد (𝑟𝑠=0).
    • فرض альтернатив (𝐻1): رابطه‌ای بین دو متغیر وجود دارد (𝑟𝑠≠0).
    برای محاسبه t می‌توانید از فرمول زیر استفاده کنید:𝑡=𝑟𝑠𝑛−21−𝑟𝑠2سپس با استفاده از توزیع t و درجه آزادی 𝑛−2 می‌توانید معناداری را بررسی کنید.

نکات مهم:

  • آزمون اسپیرمن برای داده‌های نرمال و غیرنرمال قابل استفاده است.
  • این آزمون می‌تواند برای داده‌های رتبه‌ای (ordinal) نیز به کار رود.
  • وجود نقاط پرت (outliers) تأثیر کمتری بر نتایج این آزمون نسبت به همبستگی پیرسون دارد.

پیشنهاد می شود مقالات زیر را نیز در سایت https://rava20.ir/ مطالعه نمایید.

معرفی کتاب نردبان شکسته

نوشته

۲ خاصیت مهم آب جعفری

نوشته

🌟 مشاوره و خدمات تخصصی و حرفه‌ای در زمینه‌ی نگارش پایان نامه و مقاله

نوشته

تحلیل

نوشته

تحلیل آماری پایان نامه در کم تر از 5 روز ! ویژه پایان نامه  دکتری و کارشناسی ارشد

تحلیل آماری statistical analysis

آزمون ضریب همبستگی پیرسون

آزمون ضریب همبستگی پیرسون یکی از روش‌های آماری است که برای بررسی رابطه خطی بین دو متغیر کمی استفاده می‌شود. این ضریب که با نماد 𝑟 نشان داده می‌شود، مقداری بین -1 و 1 دارد که نشان‌دهنده شدت و نوع رابطه بین دو متغیر است.

مراحل انجام آزمون ضریب همبستگی پیرسون:

  1. جمع‌آوری داده‌ها: ابتدا داده‌های مربوط به دو متغیر کمی را جمع‌آوری کنید. این داده‌ها باید به صورت جفتی (x, y) باشند.
  2. محاسبه ضریب همبستگی: فرمول محاسبه ضریب همبستگی پیرسون به صورت زیر است:
  3. 𝑟=𝑛(∑𝑥𝑦)−(∑𝑥)(∑𝑦)[𝑛∑𝑥2−(∑𝑥)2][𝑛∑𝑦2−(∑𝑦)2]
  4. در این فرمول:
    • 𝑛 تعداد داده‌هاست.
    • ∑𝑥𝑦 مجموع حاصل‌ضرب‌های جفتی است.
    • ∑𝑥 و ∑𝑦 به ترتیب مجموع مقادیر متغیرهای x و y هستند.
    • ∑𝑥2 و ∑𝑦2 به ترتیب مجموع مربع مقادیر متغیرهای x و y هستند.
  5. تفسیر نتایج:
    • اگر 𝑟=1: رابطه مثبت کامل وجود دارد.
    • اگر 𝑟=−1: رابطه منفی کامل وجود دارد.
    • اگر 𝑟=0: هیچ رابطه‌ای وجود ندارد.
    • مقادیر بین 0 و 1 یا -1 و 0 نشان‌دهنده رابطه‌های ضعیف تا متوسط هستند.
  6. آزمون فرضیه: برای بررسی معناداری ضریب همبستگی می‌توانید از آزمون t استفاده کنید. فرضیات به صورت زیر هستند:
    • فرض صفر (𝐻0): هیچ رابطه‌ای بین دو متغیر وجود ندارد (𝑟=0).
    • فرض альтернатив (𝐻1): رابطه‌ای بین دو متغیر وجود دارد (𝑟≠0).
    برای محاسبه t می‌توانید از فرمول زیر استفاده کنید:𝑡=𝑟𝑛−21−𝑟2سپس با استفاده از توزیع t و درجه آزادی 𝑛−2 می‌توانید معناداری را بررسی کنید.

نکات مهم:

  • داده‌ها باید به صورت نرمال توزیع شده باشند.
  • همبستگی پیرسون فقط رابطه خطی را بررسی می‌کند و نمی‌تواند روابط غیرخطی را شناسایی کند.
  • وجود نقاط پرت (outliers) می‌تواند تأثیر زیادی بر نتایج داشته باشد.
  • پیشنهاد می شود مقالات زیر را نیز در سایت https://rava20.ir/ مطالعه نمایید.

گیاهی که برای دورکردن افکار منفی و افزایش حافظه عالی عمل می‌کند

نوشته

تحلیل آماری پایان نامه در کم تر از 5 روز ! ویژه پایان نامه  دکتری و کارشناسی ارشد

نوشته

خواص برگ انگور ( مو ) :

نوشته

تحلیل مسیر چیست؟

نوشته

آزمون فریدمن (Friedman Test)

تحلیل آماری عوامل دموگرافیک (جمعیت شناسی)

آزمون شفه (Scheffé’s test)

آزمون شفه (Scheffé’s test) یک روش آماری است که برای مقایسه میانگین‌ها در تحلیل واریانس (ANOVA) استفاده می‌شود. این آزمون به ویژه در شرایطی که تعداد گروه‌ها بیشتر از دو است و شما می‌خواهید بررسی کنید که آیا حداقل یک میانگین از دیگر میانگین‌ها متفاوت است، کاربرد دارد. آزمون شفه به عنوان یک آزمون چندگانه (post hoc) شناخته می‌شود و به شما این امکان را می‌دهد که مقایسه‌های چندگانه را بدون افزایش نرخ خطای نوع اول (Type I error) انجام دهید.

مراحل انجام آزمون شفه

  1. انجام ANOVA: ابتدا باید یک تحلیل واریانس (ANOVA) یک‌طرفه (One-way ANOVA) انجام دهید تا بررسی کنید که آیا بین گروه‌ها اختلاف معنی‌داری وجود دارد یا خیر.
  2. محاسبه مقدار F: در ANOVA، مقدار F محاسبه می‌شود که نشان‌دهنده نسبت واریانس بین گروه‌ها به واریانس درون گروه‌ها است.
  3. انجام آزمون شفه: اگر ANOVA نشان دهد که اختلاف معنی‌داری وجود دارد، می‌توانید آزمون شفه را برای مقایسه میانگین‌های گروه‌های مختلف انجام دهید. در این مرحله، شما نیاز به محاسبه مقدار F برای هر مقایسه خاص دارید.
  4. تعیین سطح معنی‌داری: مقدار F به دست آمده را با مقدار بحرانی F که بر اساس درجه آزادی و سطح معنی‌داری انتخابی (معمولاً 0.05) مشخص می‌شود، مقایسه کنید.
  5. نتیجه‌گیری: اگر مقدار F به دست آمده از آزمون شفه بزرگتر از مقدار بحرانی باشد، می‌توانید نتیجه بگیرید که میانگین‌های گروه‌ها به طور معنی‌داری با یکدیگر متفاوت هستند.

مزایا و معایب

مزایا:

  • کنترل نرخ خطای نوع اول: آزمون شفه به خوبی می‌تواند نرخ خطای نوع اول را کنترل کند.
  • انعطاف‌پذیری: می‌توانید مقایسه‌های دلخواهی را انجام دهید و نه فقط مقایسه‌های زوجی.

معایب:

  • قدرت آزمون: آزمون شفه ممکن است قدرت کمتری نسبت به برخی از آزمون‌های دیگر مانند آزمون توکی (Tukey’s HSD) داشته باشد، به ویژه در مقایسه‌های خاص.
  • پیچیدگی محاسبات: محاسبات مربوط به آزمون شفه ممکن است پیچیده‌تر از سایر آزمون‌ها باشد.

نرم‌افزارها

آزمون شفه در بسیاری از نرم‌افزارهای آماری مانند R، Python (با استفاده از کتابخانه‌های مختلف)، SPSS و SAS قابل انجام است.

مثال

فرض کنید شما سه گروه از داده‌ها دارید که به بررسی اثر یک درمان خاص بر روی یک متغیر وابسته می‌پردازید. پس از انجام ANOVA، متوجه می‌شوید که اختلاف معنی‌داری وجود دارد. سپس با استفاده از آزمون شفه می‌توانید بررسی کنید که آیا میانگین‌های گروه‌ها با یکدیگر تفاوت دارند یا خیر.

پیشنهاد می شود مقالات زیر را نیز در سایت https://rava20.ir/ مطالعه نمایید.

آزمون همبستگی کندال (Kendall rank correlation coefficient)

نوشته

گروه بندی و توصیف آزمون های پارامتریک و ناپارامتریک برای بررسی رابطه بین متغیرها

نوشته

مراحل آزمون تحلیل واریانس دو راهه (Two-Way ANOVA) در نرم افزار spss

نوشته

آزمون کای مربع  Chi-Square (خی دو) چیست؟

نوشته

آزمون تصادفی بودن ( Test of randomness) در نرم افزار spss چگونه انجام می شود؟

سفارش تحلیل داده های آماری برای پایان نامه و مقاله نویسی تحلیل داده های آماری شما با نرم افزارهای کمی و کیفی ،مناسب ترین قیمت و کیفیت عالی انجام می گیرد. نرم افزار های کمی: SPSS- PLS – Amos نرم افزارهای کیفی: Maxquda- NVivo تعیین حجم نمونه با:Spss samplepower Mobile : 09143444846 09143444846 Telegram: https://t.me/RAVA2020 E-mail: abazizi1392@gmail.com