بایگانی ماهیانه: مارس 2024

با چه نرم افزار آماری می توان ضریب همبستگی پیرسون را انجام داد؟

با چه نرم افزار آماری می توان ضریب همبستگی پیرسون را انجام داد؟

ضریب همبستگی پیرسون یک آمار پرکاربرد است، بنابراین در بسیاری از بسته های نرم افزاری آماری گنجانده شده است.

در اینجا چند نمونه آورده شده است:

نرم افزارهای عمومی:

R

پایتون (با کتابخانه هایی مانند SciPy)

STHDA

NCSS

افزونه های صفحه گسترده:

اکسل (با افزونه هایی مانند XLSTAT)

نرم افزار آماری اختصاصی:

SPSS

منابع:

 تحلیل داده های آماری با مناسب‌ترین قیمت و کیفیت برتر!

تحلیل داده های آماری

🌟با تجربه‌ی بیش از 17 سال و ارائه‌ی بهترین خدمات

مشاوره : پایان نامه و مقاله نویسی تحلیل داده های آماری

📊تحلیل داده های آماری با نرم افزارهای کمی و کیفی

توجه: همه ی پرسشنامه هااز منابع معتبر تهیه شده،  استاندارد ، دارای روایی و پایایی و منابع داخل و پایان متن می باشند . همه ی پرسشنامه ها  قابل ویرایش در قالب نرم افزار ورد Word می باشد. 

مبانی نظری و پژوهشی متغیر ها

📞 تماس: 09143444846 (پیامک، ایتا، واتساپ، تلگرام) 🌐 کانال تلگرام: عضو شوید

(تا جای ممکن با ایتا پیام بفرستید، زودتر در جریان خواهیم بود!)

ایمیل :   abazizi1392@gmail.com

وبلاگ ما

تحلیل مسیر معمولا با چه نرم افزار آماری انجام می شود؟

نوشته

چگونه با چت چیپیتی chat gpt در کمتر از یک ساعت یک مقاله علمی نوشتند؟

نوشته

آموزش زبان انگلیسی در دنیای دیجیتال: منابع آنلاین برای بهبود مهارت‌های زبان

نوشته

انجام تحلیل داده های کمی آماری با نرم افزار SPSS

نوشته

انجام تحلیل داده های کمی با نرم افزار آموس (AMOS)

نوشته

تحلیل داده های آماری

تفسیر ضریب همبستگی پیرسون و شرایط استفاده از آن چیست؟

تفسیر ضریب همبستگی پیرسون و شرایط استفاده از آن چیست؟

تعریف و محاسبه:
طبق دایره المعارف اندازه گیری و آمار، ضریب همبستگی پیرسون از تقسیم کوواریانس دو متغیر بر حاصل ضرب انحراف معیار آنها محاسبه می شود.

ضریب همبستگی پیرسون ضریب همبستگی پیرسون (r) یک معیار آماری پرکاربرد برای ارزیابی قدرت و جهت رابطه خطی بین دو متغیر پیوسته است [1، 2، 3، 4، 5]. از -1 تا +1 متغیر است، که در آن:

+1 یک رابطه خطی مثبت کامل را نشان می دهد (با افزایش یک متغیر، متغیر دیگر به نسبت افزایش می یابد).
-1 یک رابطه خطی منفی کامل را نشان می دهد (با افزایش یک متغیر، متغیر دیگر به نسبت کاهش می یابد).
0 نشان دهنده عدم وجود رابطه خطی است.
با این حال، در نظر گرفتن شرایط استفاده موثر از پیرسون r مهم است:

نرمال بودن مشترک: داده های هر دو متغیر باید به طور مشترک به طور عادی توزیع شوند [1، 6]. یعنی توزیع هر متغیر به صورت جداگانه و توزیع ترکیبی آنها باید نرمال باشد.
خطی بودن: رابطه بین متغیرها باید خطی باشد [2، 3]. باید یک روند مستقیم وجود داشته باشد، نه یک الگوی منحنی یا چرخه ای.
نقاط پرت: وجود نقاط پرت می تواند به طور قابل توجهی بر مقدار r تأثیر بگذارد. ضروری است که قبل از تفسیر نتایج، موارد پرت را بررسی کرده و به آنها رسیدگی کنید [1، 6].
اگر این شرایط برآورده نشود، ضرایب همبستگی جایگزین ممکن است برای تحلیل رابطه بین متغیرهای شما مناسب تر باشد.

منابع :

[1] Correlation Coefficients: Appropriate Use and Interpretation https://journals.lww.com/anesthesia-analgesia/fulltext/2018/05000/correlation_coefficients__appropriate_use_and.50.aspx [2] A guide to appropriate use of Correlation coefficient in medical research https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3576830/ [3] Pearson Correlation Coefficient ~ Guide & Examples https://www.bachelorprint.com/statistics/pearson-correlation-coefficient/ [4] Correlation Coefficients: Appropriate Use and Interpretation ResearchGate: https://www.researchgate.net/publication/323388613_Correlation_Coefficients_Appropriate_Use_and_Interpretation [5] Pearson Correlation Coefficient (r) | Guide & Examples Scribbr: https://www.scribbr.com/statistics/pearson-correlation-coefficient/ [6] Correlation Coefficients: Appropriate Use and Interpretation https://pubmed.ncbi.nlm.nih.gov/29481436/

 تحلیل داده های آماری با مناسب‌ترین قیمت و کیفیت برتر!

تحلیل داده های آماری

🌟با تجربه‌ی بیش از 17 سال و ارائه‌ی بهترین خدمات

مشاوره : پایان نامه و مقاله نویسی تحلیل داده های آماری

📊تحلیل داده های آماری با نرم افزارهای کمی و کیفی

توجه: همه ی پرسشنامه هااز منابع معتبر تهیه شده،  استاندارد ، دارای روایی و پایایی و منابع داخل و پایان متن می باشند . همه ی پرسشنامه ها  قابل ویرایش در قالب نرم افزار ورد Word می باشد. 

مبانی نظری و پژوهشی متغیر ها

📞 تماس: 09143444846 (پیامک، ایتا، واتساپ، تلگرام) 🌐 کانال تلگرام: عضو شوید

(تا جای ممکن با ایتا پیام بفرستید، زودتر در جریان خواهیم بود!)

ایمیل :   abazizi1392@gmail.com

وبلاگ ما

شاخص هاي برازش مدل معادلات ساختاري

نوشته

0 تا ۱۰۰ خرید سرور مجازی

نوشته

نرم افزار لیزرل و انجام مدلسازی معادلات ساختاری با آن

نوشته

روش ها و مراحل انتخاب صحیح آزمون آماری

نوشته

کدگذاری در روش گراندد تئوری

گروه بندی و توصیف آزمون های پارامتریک و ناپارامتریک برای بررسی رابطه بین متغیرها

گروه بندی و توصیف آزمون های پارامتریک و ناپارامتریک برای بررسی رابطه بین متغیرها
آزمون‌های پارامتریک برای بررسی رابطه بین متغیرها، ویژگی‌های پارامتری خاصی از داده‌ها مانند نرمال بودن و واریانس‌های برابر را فرض می‌کنند. در اینجا چند آزمون پارامتریک رایج مورد استفاده قرار می گیرد:

ضریب همبستگی پیرسون: رابطه خطی بین دو متغیر پیوسته را اندازه گیری می کند. قدرت و جهت رابطه را از -1 (همبستگی منفی کامل) تا +1 (همبستگی مثبت کامل) ارزیابی می کند.

رگرسیون خطی ساده: رابطه بین یک متغیر وابسته و یک متغیر مستقل را بررسی می کند. شیب و قطع رابطه خطی را تخمین می زند و اهمیت رابطه را ارزیابی می کند.

رگرسیون خطی چندگانه: رگرسیون خطی ساده را برای بررسی رابطه بین یک متغیر وابسته و چند متغیر مستقل گسترش می دهد. ضرایب متغیرهای مستقل را تخمین زده و اهمیت آنها را در پیش بینی متغیر وابسته ارزیابی می کند.

تجزیه و تحلیل واریانس (ANOVA): برابری میانگین ها را در چندین گروه یا دسته آزمایش می کند. این ارزیابی می کند که آیا ارتباط معنی داری بین یک متغیر مستقل طبقه بندی و یک متغیر وابسته پیوسته وجود دارد یا خیر.

از سوی دیگر، آزمون های ناپارامتریک بر فرضیات دقیق در مورد توزیع داده های اساسی تکیه نمی کنند. آنها اغلب زمانی استفاده می‌شوند که داده‌ها مفروضات پارامتریک را نقض می‌کنند یا هنگام برخورد با داده‌های معمولی یا غیرعادی توزیع شده‌اند. در اینجا چند آزمون ناپارامتریک متداول برای بررسی رابطه بین متغیرها آورده شده است:

همبستگی رتبه- ترتیب اسپیرمن: رابطه یکنواخت بین دو متغیر را ارزیابی می کند. قدرت و جهت رابطه را بر اساس رتبه‌بندی داده‌ها، به جای مقادیر واقعی اندازه‌گیری می‌کند.

همبستگی رتبه کندال: همبستگی رتبه بین دو متغیر را اندازه گیری می کند، مشابه همبستگی اسپیرمن. با این حال، ضریب همبستگی کندال بر اساس تعداد جفت‌های همخوان و ناسازگار در داده‌ها است.

آزمون Chi-Square: ارتباط بین دو متغیر طبقه بندی را بررسی می کند. تعیین می کند که آیا تفاوت معنی داری بین فرکانس های مشاهده شده و مورد انتظار در جدول احتمالی وجود دارد یا خیر.

آزمون U Mann-Whitney: توزیع یک متغیر پیوسته را بین دو گروه مستقل مقایسه می کند. این ارزیابی می کند که آیا میانه های دو گروه به طور قابل توجهی متفاوت است یا خیر.

آزمون Kruskal-Wallis: آزمون Mann-Whitney U را برای مقایسه توزیع های یک متغیر پیوسته در بیش از دو گروه مستقل گسترش می دهد.

در هنگام انتخاب آزمون مناسب برای بررسی رابطه بین متغیرها، توجه به ماهیت داده ها، سؤال تحقیق و مفروضات هر آزمون مهم است. توصیه می شود در صورت نیاز هنگام انجام تحلیل های آماری با کارشناس آماری ما در سایت rava20.ir مشورت کنید. (کلیک)

 تحلیل داده های آماری با مناسب‌ترین قیمت و کیفیت برتر!

تحلیل داده های آماری

🌟با تجربه‌ی بیش از 17 سال و ارائه‌ی بهترین خدمات

مشاوره : پایان نامه و مقاله نویسی تحلیل داده های آماری

📊تحلیل داده های آماری با نرم افزارهای کمی و کیفی

توجه: همه ی پرسشنامه هااز منابع معتبر تهیه شده،  استاندارد ، دارای روایی و پایایی و منابع داخل و پایان متن می باشند . همه ی پرسشنامه ها  قابل ویرایش در قالب نرم افزار ورد Word می باشد. 

مبانی نظری و پژوهشی متغیر ها

📞 تماس: 09143444846 (پیامک، ایتا، واتساپ، تلگرام) 🌐 کانال تلگرام: عضو شوید

(تا جای ممکن با ایتا پیام بفرستید، زودتر در جریان خواهیم بود!)

ایمیل :   abazizi1392@gmail.com

وبلاگ ما

گیاهان دارویی برای کاهش فشار خون

نوشته

روش های بصری سازی در مکس کیو دی ای MAXQDA

نوشته

کاربردیترین کلمه ضروری برای مکالمه روزمره انگلیسی

نوشته

برای تقویت استخوان چه بخوریم؟/ ۱۱ منبع غذایی مهم دریافت کلسیم

نوشته

توانایی های هوش مصنوعی جمینی Gemini

تحلیل آماری statistical analysis

آزمون‌های مقایسه گروه ها :

آزمون t مستقل: برای مقایسه میانگین دو گروه مستقل استفاده می شود.
آزمون تی زوجی: برای مقایسه میانگین‌های دو گروه مرتبط، مانند اندازه‌گیری‌های قبل و بعد از یک گروه استفاده می‌شود.
آنالیز واریانس (ANOVA): برای مقایسه میانگین های بیش از دو گروه استفاده می شود.
آزمون های ناپارامتریک برای مقایسه دو گروه:

آزمون مجموع رتبه ویلکاکسون: برای مقایسه میانه های دو گروه استفاده می شود.
آزمون U Mann-Whitney: برای مقایسه توزیع های دو گروه استفاده می شود و می تواند به عنوان جایگزینی برای آزمون رتبه-جمع ویلکاکسون استفاده شود.
آزمون Kruskal-Wallis: برای مقایسه توزیع های بیش از دو گروه استفاده می شود و معادل ناپارامتری ANOVA یک طرفه است.
آزمون فریدمن: برای مقایسه توزیع های بیش از دو گروه مرتبط استفاده می شود و معادل ناپارامتری آنالیز واریانس دوطرفه است.
لطفاً توجه داشته باشید که اینها تنها چند نمونه از آزمون های رایج در هر دسته هستند و انتخاب آزمون مناسب به نوع داده ها، فرضیات آزمون و شرایط مطالعه بستگی دارد. توصیه می شود در صورت نیاز هنگام انجام تحلیل های آماری با کارشناس آماری ما در سایت rava20.ir مشورت کنید. (کلیک)

ماجرای ضعیف ترین دانش آموزی که موفق ترین پزشک جهان شد.

نوشته

امنیت روانی : اهمیت، عوامل مؤثر و راهکارهای بهبود

نوشته

دسته‌بندی روش‌های تحقیق بر اساس هدف :

نوشته

نحوه بررسی و رتبه بندی افراد بر اساس علاقه ی آن ها به چند چیز (مثلا رشته های ورزشی) ؟

نوشته

آزمون های پارامتریک برای مقایسه

 تحلیل داده های آماری با مناسب‌ترین قیمت و کیفیت برتر!

تحلیل داده های آماری

🌟با تجربه‌ی بیش از 17 سال و ارائه‌ی بهترین خدمات

مشاوره : پایان نامه و مقاله نویسی تحلیل داده های آماری

📊تحلیل داده های آماری با نرم افزارهای کمی و کیفی

توجه: همه ی پرسشنامه هااز منابع معتبر تهیه شده،  استاندارد ، دارای روایی و پایایی و منابع داخل و پایان متن می باشند . همه ی پرسشنامه ها  قابل ویرایش در قالب نرم افزار ورد Word می باشد. 

مبانی نظری و پژوهشی متغیر ها

📞 تماس: 09143444846 (پیامک، ایتا، واتساپ، تلگرام) 🌐 کانال تلگرام: عضو شوید

(تا جای ممکن با ایتا پیام بفرستید، زودتر در جریان خواهیم بود!)

ایمیل :   abazizi1392@gmail.com

وبلاگ ما

تحلیل آماری عوامل دموگرافیک (جمعیت شناسی)

شرایط استفاده از آزمون های پارامتریک چیست؟

شرایط استفاده از آزمون های پارامتریک چیست؟

آزمون های پارامتریک بر چندین فرض در مورد داده ها تکیه دارند [1، 2، 3، 5، 6]:

توزیع نرمال: داده ها در هر گروه باید به طور معمول توزیع شوند، که اغلب به عنوان “منحنی زنگ” نامیده می شود [1، 2، 6].
واریانس های مساوی: واریانس (گسترش) داده ها در هر گروه باید مشابه باشد [2، 5].
استقلال: نقاط داده باید مستقل از یکدیگر باشند، به این معنی که یک مشاهده روی دیگری تأثیر نمی گذارد [3].
بدون نقاط پرت: داده ها نباید دارای نقاط پرت شدیدی باشند که نتایج را منحرف کند [2].
مهم است که این فرضیات را قبل از استفاده از آزمون های پارامتریک بررسی کنید. اگر مفروضات برآورده نشوند، آزمون های ناپارامتریک ممکن است گزینه مناسب تری باشد [4].

Sources

  1. GraphPad – Assumptions for Parametric Tests https://www.statology.org/parametric-tests-assumptions/
  2. Statology – The Four Assumptions of Parametric Tests https://www.graphpad.com/support/faq/how-do-i-evaluate-if-my-data-meet-necessary-assumptions-before-applying-parametric-tests/
  3. Bookdown – Chapter 10 Assumptions of Parametric Tests https://bookdown.org/home/tags/guide/
  4. ScienceDirect – Parametric Test https://www.sciencedirect.com/topics/medicine-and-dentistry/parametric-test
  5. Health Knowledge – Parametric and Non-parametric tests for comparing two or more groups https://www.healthknowledge.org.uk/public-health-textbook/research-methods/1b-statistical-methods/parametric-nonparametric-tests
  6. Towards Data Science – Parametric Tests — the t-test https://www.sciencedirect.com/topics/medicine-and-dentistry/parametric-test

 تحلیل داده های آماری با مناسب‌ترین قیمت و کیفیت برتر!

تحلیل داده های آماری

🌟با تجربه‌ی بیش از 17 سال و ارائه‌ی بهترین خدمات

مشاوره : پایان نامه و مقاله نویسی تحلیل داده های آماری

📊تحلیل داده های آماری با نرم افزارهای کمی و کیفی

توجه: همه ی پرسشنامه هااز منابع معتبر تهیه شده،  استاندارد ، دارای روایی و پایایی و منابع داخل و پایان متن می باشند . همه ی پرسشنامه ها  قابل ویرایش در قالب نرم افزار ورد Word می باشد. 

مبانی نظری و پژوهشی متغیر ها

📞 تماس: 09143444846 (پیامک، ایتا، واتساپ، تلگرام) 🌐 کانال تلگرام: عضو شوید

(تا جای ممکن با ایتا پیام بفرستید، زودتر در جریان خواهیم بود!)

ایمیل :   abazizi1392@gmail.com

وبلاگ ما

چگونه فایل اکسل را غیر قابل ویرایش کنیم

آزمون های پارامتریک برای مقایسه

آزمون های پارامتریک برای مقایسه

داده های اسمی: توجه نمایید که آزمون های های پارامتریک برای داده های اسمی مناسب نیستند .

چون آزمون‌های پارامتریک بر فرضیات مربوط به داده‌ها، از جمله اندازه‌گیری سطح فاصله یا نسبت، تکیه دارند. داده های اسمی، که مقوله هایی را بدون نظم ذاتی نشان می دهد، این فرض را نقض می کند [1، 5، 6]

داده های ترتیبی :

این آزمون ها برای داده های ترتیبی نیز مناسب نیستند، هر چند تحت شرایط خاصی می توان گاها از آن ها استفاده کرد.

اگر داده‌های ترتیبی حداقل ویژگی‌های سطح بازه‌ای (فاصله‌های برابر بین دسته‌ها) داشته باشند، ممکن است برخی از آزمون‌های پارامتریک مناسب باشند[2، 3، 4].

بهتر است برای داده های ترتیبی که مفروضات آزمون های پارامتریک را برآورده نمی کنند، جایگزین های ناپارامتریک مانند آزمون U Mann-Whitney یا آزمون Kruskal-Wallis توصیه می شود [2، 3، 4].

آزمون های پارامتریک را می توان با داده های فاصله ای و نسبتی تحت شرایط خاصی استفاده کرد:

آزمون‌های پارامتریک مانند آزمون‌های t و ANOVA برای داده‌های نسبت ایده‌آل هستند، که در آن داده‌ها صفر واقعی و فواصل معنی‌داری بین مقادیر دارند [1، 5].

چای و دمنوش گیاهی برای کبد چرب که معجزه می‌کنند!

عصبانی‌ترین استان‌های ایران کدامند

توانایی های هوش مصنوعی جمینی Gemini

روش‌های آماری استفاده شده در تحقیق همبستگی

جدولی سادە برای انتخاب آزمون آماری مناسب


Sources

  1. Changing Minds – Types of data: http://changingminds.org/explanations/research/measurement/types_data.htm
  2. Statistics Solutions – Data Levels and Measurement: https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/data-levels-and-measurement/
  3. YouTube – Non parametric tests for group comparison with ordinal and nominal data: https://www.youtube.com/watch?v=xa-sfLbXveo (video content not used in this answer)
  4. Health Knowledge – Parametric and Non-parametric tests for comparing two or more groups: https://www.healthknowledge.org.uk/public-health-textbook/research-methods/1b-statistical-methods/parametric-nonparametric-tests
  5. Scribbr – Levels of Measurement: https://www.scribbr.com/statistics/levels-of-measurement/
  6. OpenIntro Textbook – Techniques for Dealing with Non-Normal, Categorical, and Ranked Data: https://openbooks.library.unt.edu/quantitative-analysis-exss/chapter/nonparametric-techniques-for-dealing-with-non-normal-data/
تحلیل آماری statistical analysis

آزمون های ناپارامتریک برای مقایسه

آزمون های ناپارامتریک برای مقایسه

آزمون‌های ناپارامتریک روش‌های آماری هستند که برای تجزیه و تحلیل داده‌ها زمانی که مفروضات آزمون‌های پارامتریک، مانند توزیع نرمال داده‌ها برآورده نمی‌شوند، استفاده می‌شوند [5]. آنها به جای اعداد خام، رتبه ها یا ترتیب نقاط داده را تجزیه و تحلیل می کنند.

در اینجا چند تست ناپارامتریک متداول برای مقایسه وجود دارد:

مقایسه دو گروه:
آزمون علامت: برای داده های زوجی (وابسته) با مقیاس های ترتیبی یا اسمی مناسب است [6].
آزمون من ویتنی U: برای مقایسه دو گروه مستقل با داده های ترتیبی استفاده می شود ([6)].
مقایسه سه یا چند گروه:
آزمون کروسکال-والیس: معادل ناپارامتریک آنالیز واریانس یک طرفه که برای مقایسه سه یا چند گروه مستقل با داده های ترتیبی استفاده می شود [1].
انتخاب آزمون ناپارامتریک مناسب بسته به نوع داده ها (ترتیبی، اسمی) و تعداد گروه های مورد مقایسه مهم است.

Sources

  1. Boston University – Nonparametric Tests: https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_nonparametric/bs704_nonparametric_print.html
  2. Health Knowledge – Parametric and Non-parametric tests for comparing two or more groups: https://www.healthknowledge.org.uk/public-health-textbook/research-methods/1b-statistical-methods/parametric-nonparametric-tests
  3. National Institutes of Health – Nonparametric statistical tests for the continuous data: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4754273/
  4. Stats Exchange – Non-parametric test for comparing means of 2 or more dependent variables in r: https://stats.stackexchange.com/questions/620764/non-parametric-test-for-comparing-means-of-2-or-more-dependent-variables-in-r
  5. Statistics By Jim – Nonparametric Tests vs. Parametric Tests: https://statisticsbyjim.com/hypothesis-testing/nonparametric-parametric-tests/
  6. Corporate Finance Institute – Nonparametric Tests: https://corporatefinanceinstitute.com/resources/data-science/nonparametric-tests/

 تحلیل داده های آماری با مناسب‌ترین قیمت و کیفیت برتر!

تحلیل داده های آماری

🌟با تجربه‌ی بیش از 17 سال و ارائه‌ی بهترین خدمات

مشاوره : پایان نامه و مقاله نویسی تحلیل داده های آماری

📊تحلیل داده های آماری با نرم افزارهای کمی و کیفی

توجه: همه ی پرسشنامه هااز منابع معتبر تهیه شده،  استاندارد ، دارای روایی و پایایی و منابع داخل و پایان متن می باشند . همه ی پرسشنامه ها  قابل ویرایش در قالب نرم افزار ورد Word می باشد. 

مبانی نظری و پژوهشی متغیر ها

📞 تماس: 09143444846 (پیامک، ایتا، واتساپ، تلگرام) 🌐 کانال تلگرام: عضو شوید

(تا جای ممکن با ایتا پیام بفرستید، زودتر در جریان خواهیم بود!)

ایمیل :   abazizi1392@gmail.com

وبلاگ ما

چگونه فایل اکسل را غیر قابل ویرایش کنیم

انواع آزمون های پارامتریک و ناپارامتریک

انواع آزمون های پارامتریک و ناپارامتریک

طبقه بندی کامل آزمون های پارامتیرک و ناپارامتریک

آزمون‌های پارامتریک و ناپارامتریک را بر اساس نوع متغیر و هدف آزمون می‌توان به طور کامل طبقه‌بندی کرد. در زیر، لیستی از آزمون‌های پارامتریک و ناپارامتریک به تفکیک دسته‌ها آورده شده است:

آزمون‌های پارامتریک:

آزمون میانگین:

آزمون t-Student: برای مقایسه میانگین دو گروه مستقل.
آزمون t-Student وابسته: برای مقایسه میانگین دو گروه وابسته.
آزمون تیمفر: برای مقایسه میانه دو گروه مستقل.
آزمون تیمفر وابسته: برای مقایسه میانه دو گروه وابسته.
آزمون ANOVA (Analysis of Variance): برای مقایسه میانگین بیش از دو گروه.
آزمون تحلیل واریانس چند متغیره: برای مقایسه میانگین‌های چند گروه با تأکید بر تأثیر همزمان چند متغیر مستقل.
آزمون همبستگی و رابطه:

آزمون همبستگی پیرسون: برای بررسی رابطه خطی بین دو متغیر پیوسته.
آزمون همبستگی سپیرمن: برای بررسی رابطه ترتیبی بین دو متغیر.
آزمون رگرسیون خطی: برای بررسی رابطه بین متغیرها و پیش‌بینی مقدار یک متغیر بر اساس متغیرهای دیگر.
آزمون توزیع و فراوانی:

آزمون توزیع نرمال: برای بررسی توزیع جمعیت آزموده شده با توزیع نرمال.
آزمون chi-square: برای مقایسه توزیع فراوانی دو متغیر.
آزمون کولموگروف-اسمیرنوف: برای بررسی توزیع دو نمونه و بررسی تطابق با توزیع مشخص.
آزمون‌های ناپارامتریک:

آزمون مد و رتبه:

آزمون رتبه ویلکاکسون: برای مقایسه توزیع دو گروه مستقل با داده‌های پیوسته یا گسسته.
آزمون رتبه من-ویتنی: برای مقایسه توزیع دو گروه مستقل با داده‌های پیوسته.
آزمون رتبه سیگند: برای بررسی تطابق توزیع فراوانی با یک توزیع مشخص.
آزمون توزیع و فراوانی:

آزمون کوکس-من: برای مقایسه میانه دو گروه مستقل.
آزمون کراسکال-والیس: برای مقایسه میانه بیش از دو گروه.
آزمون فریدمن: برای مقایسه میانه‌های بیش از دو گروه در طرح‌های مکرر شده.
آزمون ویلکاکسون: برای مقایسه توزیع دو گروه مستقل با داده‌های پیوسته یا گسسته.
آزمون تطابق و توزیع بدون فرض:

آزمون کی‌ساد: برای مقایسه فراوانی دو متغیر.
آزمون لوون: برای بررسی تفاوت میانه دو گروه مستقل.
آزمون همبستگی رنک سپیرمن: برای بررسی رابطه ترتیبی بین دو متغیر.
آزمون کنتور: برای بررسی تفاوت میانه‌های بیش از دو گروه.
این لیست تعدادی از آزمون‌های معروف و رایج را در هر دسته شامل می‌شود. برای استفاده دقیق‌تر و متناسب با شرایط و مسائل خاص، توصیه می‌شود به منابع آماری معتبر و متخصصان آماری مراجعه کنید. همچنین، لازم به ذکر است که این فهرست ممکن است با پیشرفت تحقیقات و روش‌های آماری جدید تغییر کند.

رمز گذاری روی فایل های ورد،پاورپوینت و اکسل

نوشته

طبقه بندی انواع آزمون ها را بر اساس نوع متغیر

نوشته

نحوه بررسی و رتبه بندی افراد بر اساس علاقه ی آن ها به چند چیز (مثلا رشته های ورزشی) ؟

نوشته

جدولی سادە برای انتخاب آزمون آماری مناسب

نوشته

انواع روش  های تحقیق آمیخته

 تحلیل داده های آماری با مناسب‌ترین قیمت و کیفیت برتر!

تحلیل داده های آماری

🌟با تجربه‌ی بیش از 17 سال و ارائه‌ی بهترین خدمات

مشاوره : پایان نامه و مقاله نویسی تحلیل داده های آماری

📊تحلیل داده های آماری با نرم افزارهای کمی و کیفی

توجه: همه ی پرسشنامه هااز منابع معتبر تهیه شده،  استاندارد ، دارای روایی و پایایی و منابع داخل و پایان متن می باشند . همه ی پرسشنامه ها  قابل ویرایش در قالب نرم افزار ورد Word می باشد. 

مبانی نظری و پژوهشی متغیر ها

📞 تماس: 09143444846 (پیامک، ایتا، واتساپ، تلگرام) 🌐 کانال تلگرام: عضو شوید

(تا جای ممکن با ایتا پیام بفرستید، زودتر در جریان خواهیم بود!)

ایمیل :   abazizi1392@gmail.com

وبلاگ ما

چگونه فایل اکسل را غیر قابل ویرایش کنیم

طبقه بندی انواع آزمون ها را بر اساس نوع متغیر

بر اساس نوع متغیر، آزمون‌ها به سه دسته اصلی تقسیم می‌شوند: آزمون‌های پارامتریک، آزمون‌های نیمه پارامتریک و آزمون‌های غیرپارامتریک. در زیر، هر دسته را به طور کامل توضیح می‌دهم:

آزمون‌های پارامتریک:

آزمون t-Student: برای مقایسه میانگین دو گروه.
آزمون تیمفر: برای مقایسه میانه دو گروه.
آزمون ANOVA: برای مقایسه میانگین بیش از دو گروه.
آزمون رگرسیون خطی: برای بررسی رابطه بین متغیرها و پیش‌بینی مقدار یک متغیر بر اساس متغیرهای دیگر.
آزمون تحلیل واریانس چند متغیره: برای مقایسه میانگین‌های چند گروه با تأکید بر تأثیر همزمان چند متغیر مستقل.
آزمون همبستگی پیرسون: برای بررسی رابطه خطی بین دو متغیر پیوسته.
آزمون‌های نیمه پارامتریک:

آزمون رنک ویلکاکسون: برای مقایسه توزیع دو گروه مستقل با داده‌های پیوسته یا گسسته.
آزمون رنک من-ویتنی: برای مقایسه توزیع دو گروه مستقل با داده‌های پیوسته.
آزمون همبستگی سپیرمن: برای بررسی رابطه ترتیبی بین دو متغیر.
آزمون‌های غیرپارامتریک:

آزمون chi-square: برای مقایسه فراوانی دو گروه.
آزمون کوکس-من: برای مقایسه میانه دو گروه.
آزمون کراسکال-والیس: برای مقایسه میانه بیش از دو گروه.
آزمون فریدمن: برای مقایسه میانه‌های بیش از دو گروه در طرح‌های مکرر شده.
آزمون ویلکاکسون: برای مقایسه توزیع دو گروه مستقل با داده‌های پیوسته یا گسسته.
این لیست شامل برخی از آزمون‌های معروف و رایج در هر دسته است. لازم به ذکر است که هر آزمون ممکن است شرایط خاص خود را داشته باشد و برای استفاده در موارد خاص و معینی مناسب باشد. همچنین، لازم است توتوجه داشت که این فهرست ممکن است با پیشرفت تحقیقات و روش‌های آماری جدید تغییر کند، و برای دسترسی به آزمون‌های مشخص و دقیق تر، به مراجعه به منابع آماری معتبر و متخصصان آماری توصیه می‌شود.

ماجرای ضعیف ترین دانش آموزی که موفق ترین پزشک جهان شد.

نوشته

فیلم راهنمای دانلود رایگان  پایان نامه ی دانشگاه های  آمریکا

نوشته

درگیری شغلی: کلیدی برای موفقیت سازمانی و پرسشنامه های استاندرد آن

نوشته

انواع مقیاس های اندازه گیری با ذکر مثال

نوشته

برای تعیین حجم نمونه چه فرمول هایی

انواع روش  های تحقیق آمیخته

 تحلیل داده های آماری با مناسب‌ترین قیمت و کیفیت برتر!

تحلیل داده های آماری

🌟با تجربه‌ی بیش از 17 سال و ارائه‌ی بهترین خدمات

مشاوره : پایان نامه و مقاله نویسی تحلیل داده های آماری

📊تحلیل داده های آماری با نرم افزارهای کمی و کیفی

توجه: همه ی پرسشنامه هااز منابع معتبر تهیه شده،  استاندارد ، دارای روایی و پایایی و منابع داخل و پایان متن می باشند . همه ی پرسشنامه ها  قابل ویرایش در قالب نرم افزار ورد Word می باشد. 

مبانی نظری و پژوهشی متغیر ها

📞 تماس: 09143444846 (پیامک، ایتا، واتساپ، تلگرام) 🌐 کانال تلگرام: عضو شوید

(تا جای ممکن با ایتا پیام بفرستید، زودتر در جریان خواهیم بود!)

ایمیل :   abazizi1392@gmail.com

وبلاگ ما

تحلیل آماری عوامل دموگرافیک (جمعیت شناسی)

معیارهای انتخاب آزمون آماری چیست؟

معیارهای انتخاب آزمون آماری چیست؟

معیارهای انتخاب آزمون آماری به منظور تعیین کدام آزمون آماری برای تحلیل داده‌های خاص استفاده شود عبارتند از:

نوع متغیر: باید ابتدا مشخص شود که متغیرها پیوسته یا گسسته هستند. این تفاوت بین دو نوع متغیر می‌تواند تأثیر مستقیم بر انتخاب آزمون آماری داشته باشد.

نوع توزیع: بررسی توزیع داده‌ها نیز از اهمیت بالایی برخوردار است. آیا داده‌ها از توزیع نرمال پیروی می‌کنند یا نه؟ برخی از آزمون‌های آماری، نیازمند فرضیه توزیع نرمال هستند و در صورتی که این فرضیه برقرار نباشد، آزمون‌های غیرپارامتریک معمولاً مناسب‌تر هستند.

نوع طرح تحقیق: انتخاب آزمون آماری همچنین بستگی به نوع طرح تحقیق دارد. آیا دارید داده‌های تک گروهی، دو گروهی یا چند گروهی را مقایسه می‌کنید؟

هدف تحقیق: باید مشخص شود که هدف تحقیق شما چیست. آیا قصد مقایسه میانگین، بررسی رابطه بین متغیرها، تفاوت در توزیع فراوانی و یا رتبه‌بندی داده‌ها را دارید؟

نمونه‌برداری: از معیارهای دیگری که باید در نظر گرفته شود، اندازه نمونه است. برخی از آزمون‌های آماری به نمونه‌های بزرگتر نیاز دارند و برخی دیگر به نمونه‌های کوچکتر.

فرضیه آماری: بر اساس فرضیه آماری که می‌خواهید بررسی کنید، ممکن است بتوانید آزمون آماری مناسب را انتخاب کنید. برخی از آزمون‌ها برای مقایسه میانگین، برخی برای مقایسه فراوانی و برخی برای بررسی رابطه بین متغیرها طراحی شده‌اند.

با توجه به این معیارها، می‌توانید آزمون آماری مناسبی را برای تحلیل داده‌های خود انتخاب کنید. همچنین، مشاوره از یک استاد راهنما یا متخصص آمار می‌تواند مفید باشمعیارهای انتخاب آزمون آماری عبارتند از:

نوع داده‌ها: بررسی نوع داده‌ها اولین قدم در انتخاب آزمون آماری است. آیا داده‌ها پیوسته هستند (مانند اندازه، وزن، زمان) یا گسسته (مانند تعداد، دسته‌بندی)؟ این تفاوت تأثیر زیادی در انتخاب آزمون دارد.

تعداد گروه‌ها: بسته به تعداد گروه‌ها که می‌خواهید مقایسه کنید، آزمون مناسب را انتخاب کنید. آیا دارید داده‌های یک گروه را با یک مقدار مشخص مقایسه می‌کنید؟ آیا دو گروه را با یکدیگر مقایسه می‌کنید؟ یا آیا بیش از دو گروه دارید که می‌خواهید مقایسه کنید؟

فرضیه آماری: فرضیه آماری که می‌خواهید درباره داده‌ها بررسی کنید نقش مهمی در انتخاب آزمون آماری دارد. آیا قصد دارید میانگین دو گروه متفاوت هستند؟ آیا فراوانی دو گروه تفاوت دارد؟ یا آیا می‌خواهید رابطه بین دو متغیر را بررسی کنید؟

توزیع داده‌ها: بررسی توزیع داده‌ها نیز اهمیت دارد. آیا داده‌ها از توزیع نرمال پیروی می‌کنند؟ برخی از آزمون‌های آماری، نیازمند فرضیه توزیع نرمال هستند و در صورتی که این فرضیه برقرار نباشد، آزمون‌های غیرپارامتریک معمولاً مناسب‌تر هستند.

اندازه نمونه: اندازه نمونه نیز برای انتخاب آزمون آماری مهم است. برخی از آزمون‌ها به نمونه‌های بزرگتر نیاز دارند و برخی دیگر به نمونه‌های کوچکتر.

سطح معناداری: سطح معناداری که می‌خواهید استفاده کنید نیز در انتخاب آزمون آماری تأثیر دارد. سطح معناداری معمولاً در ارزیابی تفاوت‌ها و قبول یا رد فرضیه آماری استفاده می‌شود.

با توجه به این معیارها، می‌توانید آزمون آماری مناسبی را برای

تحلیل داده‌های خود انتخاب کنید. برای هر معیار، ممکن است چندین آزمون آماری مناسب وجود داشته باشد. در ادامه، به برخی از معیارهای انتخاب آزمون آماری و مثال‌هایی از آزمون‌های متناسب با آنها اشاره می‌کنم:

معیارهای نوع داده‌ها:

متغیرهای پیوسته: برای مقایسه میانگین دو گروه، آزمون t-Student یا آزمون Mann-Whitney را می‌توان استفاده کرد.
متغیرهای گسسته: برای مقایسه فراوانی دو گروه، آزمون chi-square یا آزمون Fisher’s exact را می‌توان استفاده کرد.
معیارهای تعداد گروه‌ها:

مقایسه دو گروه: آزمون t-Student (برای متغیرهای پیوسته) و آزمون Mann-Whitney (برای متغیرهای گسسته) مناسب هستند.
مقایسه بیش از دو گروه: آزمون ANOVA (برای متغیرهای پیوسته) و آزمون Kruskal-Wallis (برای متغیرهای گسسته) را می‌توان استفاده کرد.
معیارهای فرضیه آماری:

مقایسه میانگین دو گروه: آزمون t-Student (برای متغیرهای پیوسته) و آزمون Mann-Whitney (برای متغیرهای گسسته) را می‌توان استفاده کرد.
مقایسه فراوانی دو گروه: آزمون chi-square (برای متغیرهای گسسته) و آزمون Fisher’s exact (برای متغیرهای گسسته) را می‌توان استفاده کرد.
بررسی رابطه بین متغیرها: آزمون همبستگی پیرسون (برای متغیرهای پیوسته) و آزمون همبستگی رنک سریال کندال (برای متغیرهای گسسته) را می‌توان استفاده کرد.
معیارهای توزیع داده‌ها:

داده‌های نرمال: آزمون t-Student (برای مقایسه میانگین) و آزمون ANOVA (برای مقایسه بیش از دو گروه) مناسب هستند.
داده‌های غیرنرمال: آزمون Mann-Whitney (برای مقایسه میانگین) و آزمون Kruskal-Wallis (برای مقایسه بیش از دو گروه) را می‌توان استفاده کرد.
معیارهای اندازه نمونه:

نمونه‌های بزرگتر: آزمون t-Student (برای مقایسه میانگینادامه:
می‌توانید در ادامه تحلیل داده‌های خود از آزمون‌های آماری دیگری نیز استفاده کنید، طبق نیاز و شرایط خاص مطالعه‌تان. در زیر، چند آزمون آماری دیگر را معرفی می‌کنم:

آزمون تیمفر:
این آزمون برای مقایسه میانه دو گروه مستقل از داده‌های پیوسته به کار می‌رود. این آزمون از توزیع تیمفر استفاده می‌کند و مناسب استفاده در مواردی است که توزیع داده‌ها نرمال نباشد یا تعداد مشاهدات نامتوازن باشد.

آزمون کوکس:
این آزمون برای مقایسه میانه دو گروه مستقل از داده‌های پیوسته با توزیع نرمال استفاده می‌شود. این آزمون از توزیع کوکس استفاده می‌کند و مناسب استفاده در مواردی است که فرضیه ما بر این است که نسبت میانگین‌ها یا میانه‌ها برابر است.

آزمون ویلکاکسون:
این آزمون برای مقایسه توزیع دو گروه مستقل از داده‌های پیوسته استفاده می‌شود. این آزمون برای مواردی مناسب است که توزیع داده‌ها نرمال نباشد یا تعداد مشاهدات نامتوازن باشد.

آزمون ویلکاکسون-مان-ویتنی:
این آزمون برای مقایسه توزیع دو گروه مستقل از داده‌های پیوسته استفاده می‌شود. این آزمون از توزیع ویلکاکسون-مان-ویتنی استفاده می‌کند و به خوبی در مواردی کارایی دارد که توزیع داده‌ها نرمال نباشد یا تعداد مشاهدات نامتوازن باشد.

در هر صورت، قبل از استفاده از هر آزمون آماری، مطمئن شوید که شرایط استفاده از آن را درک کرده و فرضیات آزمون را به درستی بررسی کنید. همچنین، در صورت امکان، مشورت با یک متخصص آماری یا استاد مربوطه را پیشنهاد می‌کنم.

فصل 5 : آموزش انویوو: جستجو و بازیابی اطلاعات

نوشته

تحلیل آماری متغیر تعدیل‌کننده (Moderator Variable)

نوشته

مقدار T-Value و مقدار P-Value در آزمون فرض آماری چیست؟

نوشته

جدولی سادە برای انتخاب آزمون آماری مناسب

نوشته

نرم افزار لیزرل و انجام مدلسازی معادلات ساختاری با آن

انواع روش  های تحقیق آمیخته

 تحلیل داده های آماری با مناسب‌ترین قیمت و کیفیت برتر!

تحلیل داده های آماری

🌟با تجربه‌ی بیش از 17 سال و ارائه‌ی بهترین خدمات

مشاوره : پایان نامه و مقاله نویسی تحلیل داده های آماری

📊تحلیل داده های آماری با نرم افزارهای کمی و کیفی

توجه: همه ی پرسشنامه هااز منابع معتبر تهیه شده،  استاندارد ، دارای روایی و پایایی و منابع داخل و پایان متن می باشند . همه ی پرسشنامه ها  قابل ویرایش در قالب نرم افزار ورد Word می باشد. 

مبانی نظری و پژوهشی متغیر ها

📞 تماس: 09143444846 (پیامک، ایتا، واتساپ، تلگرام) 🌐 کانال تلگرام: عضو شوید

(تا جای ممکن با ایتا پیام بفرستید، زودتر در جریان خواهیم بود!)

ایمیل :   abazizi1392@gmail.com

وبلاگ ما