بایگانی برچسب: s

تحلیل آماری عوامل دموگرافیک (جمعیت شناسی)

آزمون رگرسیون لجستیک (Logistic Regression)

آزمون رگرسیون لجستیک (Logistic Regression) یک تکنیک آماری است که برای مدل‌سازی و تحلیل داده‌هایی که متغیر وابسته آن‌ها به صورت دسته‌ای (باینری) است، استفاده می‌شود. به عبارت دیگر، رگرسیون لجستیک به ما کمک می‌کند تا احتمال وقوع یک رویداد خاص را بر اساس یک یا چند متغیر مستقل پیش‌بینی کنیم. در ادامه، به تشریح جزئیات این آزمون می‌پردازیم.

ویژگی‌های رگرسیون لجستیک

  1. متغیر وابسته باینری: در رگرسیون لجستیک، متغیر وابسته معمولاً دو دسته دارد (مثلاً موفقیت/شکست، بله/خیر).
  2. مدل‌سازی احتمال: رگرسیون لجستیک به جای پیش‌بینی مقادیر مستقیم، احتمال وقوع یک رویداد خاص را پیش‌بینی می‌کند. این احتمال بین 0 و 1 قرار دارد.
  3. تابع لجستیک: برای مدل‌سازی این احتمال، از تابع لجستیک استفاده می‌شود که به شکل زیر است:𝑃(𝑌=1∣𝑋)=11+𝑒−(𝛽0+𝛽1𝑋1+𝛽2𝑋2+…+𝛽𝑛𝑋𝑛)در این معادله:
    • 𝑃(𝑌=1∣𝑋) احتمال وقوع رویداد (مثلاً موفقیت) است.
    • 𝛽0 عرض از مبدأ و 𝛽1,𝛽2,…,𝛽𝑛 ضرایب مربوط به متغیرهای مستقل هستند.

مراحل انجام آزمون رگرسیون لجستیک

  1. جمع‌آوری داده‌ها: داده‌های مربوط به متغیر وابسته (باینری) و متغیرهای مستقل را جمع‌آوری کنید.
  2. تحلیل داده‌ها: داده‌ها را بررسی کنید تا از وجود هرگونه ناهنجاری یا داده‌های گمشده مطمئن شوید.
  3. انتخاب مدل: مدل رگرسیون لجستیک را انتخاب کنید.
  4. برآورد پارامترها: با استفاده از روش‌های آماری مانند حداکثر احتمال (Maximum Likelihood Estimation) پارامترهای مدل را برآورد کنید.
  5. ارزیابی مدل:
    • آزمون Wald: برای بررسی معناداری هر یک از متغیرهای مستقل.
    • آزمون نسبت احتمال (Likelihood Ratio Test): برای مقایسه مدل‌ها.
    • معیار AIC/BIC: برای انتخاب مدل بهینه.
  6. تفسیر نتایج: ضرایب به دست آمده را تفسیر کنید. یک ضریب مثبت نشان‌دهنده افزایش احتمال وقوع رویداد و یک ضریب منفی نشان‌دهنده کاهش احتمال است.
  7. پیش‌بینی: از مدل برای پیش‌بینی مقادیر جدید استفاده کنید و احتمال وقوع رویدادها را محاسبه کنید.
  8. تحلیل باقی‌مانده‌ها: باقی‌مانده‌ها را بررسی کنید تا از مناسب بودن مدل اطمینان حاصل کنید.

نکات مهم

  • فرضیات: رگرسیون لجستیک فرض می‌کند که رابطه بین متغیرهای مستقل و لگاریتم نسبت شانس (log-odds) خطی است.
  • عدم وجود همخطی: وجود همخطی بین متغیرهای مستقل می‌تواند نتایج را تحت تأثیر قرار دهد.
  • تجزیه و تحلیل ROC: برای ارزیابی دقت مدل و انتخاب آستانه مناسب برای پیش‌بینی، می‌توان از منحنی ROC (Receiver Operating Characteristic) استفاده کرد.

کاربردهای رگرسیون لجستیک

رگرسیون لجستیک در زمینه‌های مختلفی از جمله پزشکی (پیش‌بینی بیماری)، بازاریابی (پیش‌بینی خرید مشتری)، علوم اجتماعی (تحلیل رفتار) و بسیاری دیگر کاربرد دارد.

پیشنهاد می شود مقالات زیر را نیز در سایت https://rava20.ir/ مطالعه نمایید.

آیا آزمون اوم نی بوس تنها روش ارزیابی مدل رگرسیون لجستیک است؟

نوشته

آیا تحقیق پس‌رویدادی محدودیت‌هایی دارد که باید در نظر گرفته شوند؟

نوشته

درمان کبد چرب با ۹ میوە جالب

نوشته

آزمون همبستگی اسپیرمن (Spearman’s Rank Correlation Coefficient)

نوشته

آزمون آماری پیلای یا ( pillai’s test) چیست؟

خدمات تخصصی پژوهش و تحلیل داده های آماری با مناسب‌ترین قیمت و کیفیت برتر!

🌟با تجربه‌ی بیش از 17 سال و ارائه‌ی بهترین خدمات

مشاوره نگارش: تحلیل داده های آماری

ارائه و طراحی پرسشنامه های استاندارد

📊تحلیل داده های آماری با نرم افزارهای کمی و کیفی

📞 تماس: 09143444846 (پیامک، ایتا، واتساپ، تلگرام)

🌐 کانال تلگرام: عضو شوید

🌐 وبلاگ 

💼کیفیت بالا، قیمت مناسب و خدماتی که به نیازهای شما پاسخ می‌دهند!

💼با ما همراه باشید و پروژه‌ی خود را به یک تجربه‌ی موفق تبدیل کنید.

 

 

تحلیل آماری statistical analysis

آزمون رگرسیون (Regression Analysis)

آزمون رگرسیون (Regression Analysis) یک تکنیک آماری است که برای مدل‌سازی و تحلیل روابط بین متغیرها استفاده می‌شود. به طور خاص، این آزمون به ما کمک می‌کند تا بفهمیم چگونه یک یا چند متغیر مستقل (پیش‌بینی‌کننده) می‌توانند بر یک متغیر وابسته (نتیجه) تأثیر بگذارند. در ادامه، به بررسی اجزای کلیدی آزمون رگرسیون، انواع آن و مراحل انجام آن می‌پردازیم.

اجزای کلیدی آزمون رگرسیون

  1. متغیر وابسته (Dependent Variable): متغیری که می‌خواهیم پیش‌بینی یا توضیح دهیم.
  2. متغیر مستقل (Independent Variable): متغیرهایی که می‌توانند بر متغیر وابسته تأثیر بگذارند.
  3. مدل رگرسیون: معادله‌ای که رابطه بین متغیرها را توصیف می‌کند. به عنوان مثال، در رگرسیون خطی، مدل به صورت 𝑌=𝑎+𝑏𝑋+𝜖 است که در آن 𝑌 متغیر وابسته، 𝑋 متغیر مستقل، 𝑎 عرض از مبدأ، 𝑏 شیب خط و 𝜖 خطای تصادفی است.

انواع رگرسیون

  1. رگرسیون خطی ساده: شامل یک متغیر مستقل و یک متغیر وابسته.
  2. رگرسیون خطی چندگانه: شامل چندین متغیر مستقل و یک متغیر وابسته.
  3. رگرسیون غیرخطی: زمانی که رابطه بین متغیرها به صورت غیرخطی باشد.
  4. رگرسیون لجستیک: برای پیش‌بینی متغیرهای وابسته دسته‌ای (باینری) استفاده می‌شود.

مراحل انجام آزمون رگرسیون

  1. جمع‌آوری داده‌ها: داده‌های مربوط به متغیرهای مستقل و وابسته را جمع‌آوری کنید.
  2. تحلیل داده‌ها: داده‌ها را بررسی کنید تا از وجود هرگونه ناهنجاری یا داده‌های گمشده مطمئن شوید.
  3. انتخاب مدل: نوع مدل رگرسیونی مناسب را انتخاب کنید (خطی، غیرخطی، لجستیک و غیره).
  4. برآورد پارامترها: با استفاده از روش‌های آماری (مانند حداقل مربعات) پارامترهای مدل را برآورد کنید.
  5. ارزیابی مدل: مدل را با استفاده از معیارهایی مانند R-squared، آزمون F و آزمون t ارزیابی کنید.
  6. تفسیر نتایج: نتایج را تفسیر کنید و ببینید که آیا متغیرهای مستقل تأثیر معناداری بر متغیر وابسته دارند یا خیر.
  7. پیش‌بینی: از مدل برای پیش‌بینی مقادیر جدید استفاده کنید.

نکات مهم

  • همخطی: وجود همخطی بین متغیرهای مستقل می‌تواند نتایج را تحت تأثیر قرار دهد.
  • نرمال بودن خطاها: فرض نرمال بودن توزیع خطاها برای بسیاری از آزمون‌ها ضروری است.
  • تجزیه و تحلیل باقی‌مانده‌ها: بررسی باقی‌مانده‌ها برای ارزیابی مناسب بودن مدل.

پیشنهاد می شود مقالات زیر را نیز در سایت https://rava20.ir/ مطالعه نمایید.

سوالات کاربر و فروشنده گیاهان دارویی ۱۴۰۳【اصل سوالات آزمون با جواب 】+ چندین نمونه سوال استاندارد دیگر

نوشته

ترتیب اعداد بعد از میلیارد

نوشته

آیا آزمون احتمال دقیق فیشر  از  آزمون کای-دو  مناسب تر است؟

نوشته

آزمون های تعقیبی (Post Hoc)

نوشته

اصطلاحات تخصصی کمپوست قارچ

سفارش تحلیل داده های آماری برای پایان نامه و مقاله نویسی تحلیل داده های آماری شما با نرم افزارهای کمی و کیفی ،مناسب ترین قیمت و کیفیت عالی انجام می گیرد. نرم افزار های کمی: SPSS- PLS – Amos نرم افزارهای کیفی: Maxquda- NVivo تعیین حجم نمونه با:Spss samplepower Mobile : 09143444846 09143444846 Telegram: https://t.me/RAVA2020 E-mail: abazizi1392@gmail.com
تحلیل آماری statistical analysis

آزمون چند دامنه ای دانکن یا (ِDuncan’s Multiple range test )

آزمون چند دامنه ای دانکن یا (ِDuncan’s Multiple range test )

آزمون چند دامنه‌ای دانکن (Duncan’s Multiple Range Test) یک روش آماری است که برای مقایسه میانگین‌های چند گروه (معمولاً در تحلیل واریانس یا ANOVA) استفاده می‌شود. این آزمون به ویژه زمانی کاربرد دارد که شما می‌خواهید بفهمید کدام گروه‌ها از نظر میانگین با یکدیگر تفاوت معناداری دارند. آزمون دانکن به دلیل قدرت تشخیص بالایی که دارد، به طور گسترده‌ای در تحقیقات علمی به کار می‌رود.

مراحل انجام آزمون دانکن:

  1. اجرای تحلیل واریانس (ANOVA):
    • قبل از انجام آزمون دانکن، باید یک تحلیل واریانس (ANOVA) انجام دهید تا بررسی کنید آیا حداقل یک میانگین گروه با دیگر گروه‌ها متفاوت است یا خیر.
    • فرض صفر (H0) در ANOVA بیان می‌کند که تمامی میانگین‌ها برابرند.
  2. محاسبه آماره F:
    • با استفاده از داده‌های گروهی، آماره F را محاسبه کنید و آن را با مقدار بحرانی F مقایسه کنید. اگر فرض صفر رد شود، به مرحله بعدی می‌روید.
  3. محاسبه میانگین‌ها:
    • میانگین هر گروه را محاسبه کنید.
  4. ترتیب میانگین‌ها:
    • میانگین‌ها را به ترتیب از بزرگ به کوچک یا برعکس مرتب کنید.
  5. محاسبه دامنه‌های معنادار:
    • با استفاده از جدول مربوط به آزمون دانکن و با توجه به تعداد گروه‌ها و سطح معناداری (معمولاً 0.05)، دامنه معنادار را محاسبه کنید.
    • دامنه معنادار به شما می‌گوید که چه مقدار اختلاف میان میانگین‌ها باید وجود داشته باشد تا تفاوت معنادار تلقی شود.
  6. مقایسه میانگین‌ها:
    • میانگین‌ها را با یکدیگر مقایسه کنید. اگر اختلاف میان دو میانگین بیشتر از دامنه معنادار محاسبه شده باشد، می‌توانید نتیجه بگیرید که این دو گروه از نظر میانگین تفاوت معناداری دارند.

نکات مهم:

  • تعداد گروه‌ها: آزمون دانکن معمولاً برای مقایسه میانگین‌های سه گروه یا بیشتر استفاده می‌شود.
  • توزیع نرمال: فرض نرمال بودن توزیع داده‌ها باید بررسی شود.
  • همگنی واریانس‌ها: واریانس‌های گروه‌ها باید مشابه باشند (این فرض را می‌توان با آزمون برون‌فور (Levene’s test) بررسی کرد).

مزایا و معایب:

  • مزایا: آزمون دانکن حساسیت بالایی دارد و می‌تواند به شناسایی تفاوت‌های معنادار بین گروه‌ها کمک کند.
  • معایب: ممکن است در مقایسه با سایر روش‌ها (مانند آزمون توکی) نتایج کاذب بیشتری تولید کند، به ویژه در تعداد گروه‌های زیاد.
سفارش تحلیل داده های آماری برای پایان نامه و مقاله نویسی تحلیل داده های آماری شما با نرم افزارهای کمی و کیفی ،مناسب ترین قیمت و کیفیت عالی انجام می گیرد. نرم افزار های کمی: SPSS- PLS – Amos نرم افزارهای کیفی: Maxquda- NVivo تعیین حجم نمونه با:Spss samplepower Mobile : 09143444846 09143444846 Telegram: https://t.me/RAVA2020 E-mail: abazizi1392@gmail.com

پیشنهاد می شود مقالات زیر را نیزhttps://rava20.ir/ در وبسایت مطالعه نمایید.

الگوی پارادایمی بر اساس نظریه داده بنیاد (گراندد تئوری)

نوشته

آزمون دقیق فیشر (Fisher’s exact test)

نوشته

آزمون تحلیل واریانس چیست؟ Analysis of Variance test

نوشته

کتاب “مدیریت زمان: راهنمای کامل برای بهره‌وری و موفقیت” (برای اولین بار در ایران)

نوشته

آزمون کروسکال-والیس (Kruskal-Wallis H Test)

چگونه فایل اکسل را غیر قابل ویرایش کنیم

آزمون تی هتلینگ ( Hotelling T test)

آزمون تی هتلینگ ( Hotelling T test)

آزمون تی هتلینگ (Hotelling’s T-squared test) یک روش آماری است که برای مقایسه میانگین‌های چندین متغیر وابسته در دو گروه مستقل استفاده می‌شود. این آزمون به ویژه در تحلیل داده‌های چندمتغیره کاربرد دارد و می‌تواند برای بررسی تفاوت‌های میانگین‌ها در شرایطی که متغیرهای وابسته ممکن است به هم وابسته باشند، مورد استفاده قرار گیرد.

مراحل انجام آزمون تی هتلینگ:

  1. تعریف فرضیات:
    • فرض صفر (H0): میانگین‌های دو گروه برابرند.
    • فرض جایگزین (H1): میانگین‌های دو گروه برابر نیستند.
  2. جمع‌آوری داده‌ها:
    • داده‌های مربوط به دو گروه باید جمع‌آوری شوند. این داده‌ها باید شامل چندین متغیر وابسته باشند.
  3. محاسبه آماره آزمون:
    • آماره آزمون T هتلینگ بر اساس واریانس و میانگین‌های گروه‌ها محاسبه می‌شود. فرمول محاسبه به صورت زیر است: 𝑇2=𝑛1𝑛2𝑛1+𝑛2(𝑋1ˉ−𝑋2ˉ)𝑇𝑆−1(𝑋1ˉ−𝑋2ˉ) که در آن:
      • 𝑛1 و 𝑛2 تعداد نمونه‌ها در گروه‌های 1 و 2 هستند.
      • 𝑋1ˉ و 𝑋2ˉ میانگین‌های گروه‌های 1 و 2 هستند.
      • 𝑆 ماتریس واریانس-کوواریانس است.
  4. تعیین توزیع آماره آزمون:
    • آماره T هتلینگ به توزیع F مرتبط است. برای تعیین اینکه آیا فرض صفر رد می‌شود یا خیر، باید درجه آزادی مناسب را محاسبه کنید.
  5. مقایسه با سطح معنی‌داری:
    • با استفاده از جدول توزیع F، مقدار محاسبه شده را با مقدار بحرانی مقایسه کنید. اگر مقدار محاسبه شده بیشتر از مقدار بحرانی باشد، فرض صفر رد می‌شود.

نکات مهم:

  • این آزمون نیاز به فرض نرمال بودن داده‌ها و همسانی واریانس‌ها دارد.
  • در صورتی که تعداد متغیرهای وابسته زیاد باشد، آزمون تی هتلینگ می‌تواند به عنوان یک ابزار مفید برای تحلیل داده‌های چندمتغیره باشد.

کاربردها:

آزمون تی هتلینگ در زمینه‌های مختلفی از جمله روانشناسی، پزشکی، علوم اجتماعی و اقتصاد کاربرد دارد و می‌تواند برای تحلیل داده‌های تجربی که شامل چندین متغیر وابسته هستند، استفاده شود.

همچنین پیشنهاد می شود مقاله های زیر را در سایت https://rava20.ir/

مطالعه نمایید.


آزمون همبستگی اسپیرمن (Spearman’s Rank Correlation Coefficient)

نوشته

کامل ترین پکیج آموزش کاربردی نرم افزار انویو Nvivo (فصل چهارم)

نوشته

جلسه 22 مقدمات spss – اصلاح یا حذف سیستماتیک ردیف های بدون جواب + شناسایی داده های پرت

نوشته

ترجمه رایگان با هوش مصنوعی،  ترجمه pdf (مقاله، پایان نامه و … ) در سه سوت!

نوشته

پرسشنامه اسناد خطا گودجانسون( GBAI) 

سفارش تحلیل داده های آماری برای پایان نامه و مقاله نویسی تحلیل داده های آماری شما با نرم افزارهای کمی و کیفی ،مناسب ترین قیمت و کیفیت عالی انجام می گیرد. نرم افزار های کمی: SPSS- PLS – Amos نرم افزارهای کیفی: Maxquda- NVivo تعیین حجم نمونه با:Spss samplepower Mobile : 09143444846 09143444846 Telegram: https://t.me/RAVA2020 E-mail: abazizi1392@gmail.com
چگونه فایل اکسل را غیر قابل ویرایش کنیم

الگوی پارادایمی بر اساس نظریه داده بنیاد (گراندد تئوری)

الگوی پارادایمی بر اساس نظریه داده بنیاد (گراندد تئوری) چگونه است؟

الگوی پارادایمی بر اساس نظریه داده بنیاد (گراندد تئوری) به عنوان یک رویکرد کیفی در پژوهش‌های اجتماعی و علوم انسانی شناخته می‌شود. این نظریه به پژوهشگر کمک می‌کند تا از داده‌های واقعی به تئوری‌های انتزاعی برسد. در ادامه، به تشریح این الگو و مراحل آن می‌پردازم:

۱. تعریف و مفهوم

نظریه داده بنیاد (گراندد تئوری) به پژوهشگران این امکان را می‌دهد که تئوری‌ها را به طور مستقیم از داده‌ها استخراج کنند، به جای اینکه از پیش فرض‌ها و تئوری‌های موجود شروع کنند. این رویکرد به ویژه در شرایطی که اطلاعات کافی در مورد یک پدیده خاص وجود ندارد، کاربردی است.

۲. مراحل الگوی پارادایمی

الگوی پارادایمی در گراندد تئوری معمولاً شامل مراحل زیر است:

الف. جمع‌آوری داده‌ها

  • مصاحبه‌ها: استفاده از مصاحبه‌های نیمه‌ساختاریافته یا غیرساختاریافته برای جمع‌آوری داده‌های عمیق.
  • مشاهده: مشاهده رفتارها و تعاملات در موقعیت‌های طبیعی.
  • متون و اسناد: بررسی متون مرتبط با موضوع پژوهش.

ب. کدگذاری داده‌ها

  • کدگذاری باز: شناسایی و نام‌گذاری مفاهیم و پدیده‌های اولیه در داده‌ها.
  • کدگذاری محوری: تعیین روابط بین کدهای باز و دسته‌بندی آن‌ها.
  • کدگذاری انتخابی: انتخاب کدهای محوری و توسعه تئوری نهایی بر اساس آن‌ها.

ج. توسعه تئوری

  • ساختار تئوری: ایجاد یک ساختار تئوری که شامل مفاهیم کلیدی و روابط آن‌ها باشد.
  • اعتبارسنجی: ارزیابی و اعتبارسنجی تئوری از طریق مقایسه با داده‌های جدید و بازخورد از شرکت‌کنندگان.

۳. ویژگی‌ها و مزایا

  • انعطاف‌پذیری: پژوهشگران می‌توانند روش‌ها و تکنیک‌های خود را در طول کار تغییر دهند.
  • توجه به زمینه: تئوری‌ها بر اساس داده‌های واقعی و زمینه‌های خاص شکل می‌گیرند.
  • توسعه مستمر: امکان اصلاح و به‌روزرسانی تئوری‌ها با ورود داده‌های جدید.

۴. چالش‌ها

  • پیچیدگی: فرآیند کدگذاری و تحلیل می‌تواند زمان‌بر و پیچیده باشد.
  • نیاز به مهارت: پژوهشگران باید در زمینه‌های کیفی و تحلیل داده‌ها مهارت داشته باشند.

نتیجه‌گیری

الگوی پارادایمی بر اساس نظریه داده بنیاد، ابزاری قدرتمند برای توسعه تئوری‌ها از دل داده‌های واقعی است. این روش به پژوهشگران کمک می‌کند تا با درک عمیق‌تری از پدیده‌ها به تحلیل و تفسیر بپردازند و تئوری‌هایی بسازند که مستند به واقعیت‌های اجتماعی باشند.

در زیر الگوی پارادایمی نظریه داده بنیاد ( گراندد تئوری) نشان داده شده است.

پارادایمی گراندد تئوری

 تحلیل داده های آماری با مناسب‌ترین قیمت و کیفیت برتر!

تحلیل داده های آماری

🌟با تجربه‌ی بیش از 17 سال و ارائه‌ی بهترین خدمات

مشاوره : پایان نامه و مقاله نویسی تحلیل داده های آماری

📊تحلیل داده های آماری با نرم افزارهای کمی و کیفی

توجه: همه ی پرسشنامه هااز منابع معتبر تهیه شده،  استاندارد ، دارای روایی و پایایی و منابع داخل و پایان متن می باشند . همه ی پرسشنامه ها  قابل ویرایش در قالب نرم افزار ورد Word می باشد. 

مبانی نظری و پژوهشی متغیر ها

📞 تماس: 09143444846 (پیامک، ایتا، واتساپ، تلگرام) 🌐 کانال تلگرام: عضو شوید

(تا جای ممکن با ایتا پیام بفرستید، زودتر در جریان خواهیم بود!)

ایمیل :   abazizi1392@gmail.com

وبلاگ ما

کاربرد هوش مصنوعی در آموزش چیست؟

نوشته

آیا Atlas.ti امکاناتی برای تحلیل داده‌های چندرسانه‌ای نیز دارد؟

نوشته

تحلیل نظریه زمینه‌ای (گراندد تئوری یا داده بنیاد)

نوشته

منطق فوق العاده مورچه ها برای کار و زندگی

نوشته

با این راهکارهای خونگی و فوری قارچ ناخن هاتو از بین ببر

تحلیل آماری عوامل دموگرافیک (جمعیت شناسی)

تحلیل مضمون با روش اترید-استرلینگ (Attride-Stirling)

تحلیل مضمون با روش اترید-استرلینگ (Attride-Stirling) یک رویکرد کیفی برای تحلیل داده‌ها است که به ویژه در زمینه‌های علوم اجتماعی و انسانی کاربرد دارد.

این روش به محققان کمک می‌کند تا مضامین و الگوهای موجود در داده‌های کیفی را شناسایی و تحلیل کنند. در ادامه، مراحل و ویژگی‌های این روش به تفصیل توضیح داده می‌شود:

1. مقدمه‌ای بر روش اترید-استرلینگ

روش اترید-استرلینگ در سال 2001 توسط مری اترید و آلن استرلینگ معرفی شد. این روش به محققان کمک می‌کند تا داده‌های کیفی را به صورت سیستماتیک و ساختارمند تحلیل کنند و مضامین اصلی را شناسایی نمایند. این روش به ویژه برای تحلیل مصاحبه‌ها، متون و داده‌های دیگر کیفی مناسب است.

2. مراحل تحلیل مضمون ب� روش اترید-استرلینگ

روش اترید-استرلینگ شامل چند مرحله کلیدی است:

الف) جمع‌آوری داده‌ها

  • داده‌ها معمولاً از طریق مصاحبه‌های عمیق، گروه‌های متمرکز، یا متون نوشته شده جمع‌آوری می‌شوند.

ب) کدگذاری اولیه

  • در این مرحله، محقق داده‌ها را به قطعات کوچکتر تقسیم می‌کند و برای هر قطعه یک کد یا برچسب توصیفی ایجاد می‌کند. این کدها می‌توانند شامل مفاهیم، احساسات، یا موضوعات خاص باشند.

ج) شناسایی مضامین

  • پس از کدگذاری، محقق مضامین اصلی را شناسایی می‌کند. این مضامین می‌توانند شامل الگوهای تکراری یا موضوعات مشترک در داده‌ها باشند.

د) ایجاد شبکه مضامین

  • در این مرحله، محقق یک شبکه مضامین ایجاد می‌کند که روابط بین مضامین �ختلف را نشان می‌دهد. این شبکه به درک بهتر ساختار و ارتباطات بین مضامین کمک می‌کند.

ه) تحلیل و تفسیر

  • در این مرحله، محقق به تحلیل و تفسیر مضامین و شبکه مضامین می‌پردازد. این تحلیل می‌تواند شامل بررسی تأثیرات اجتماعی، فرهنگی یا روان‌شناختی مضامین باشد.

3. ویژگی‌های روش اترید-استرلینگ

  • ساختارمند: این روش به محققان کمک می‌کند تا به صورت سیستماتیک و ساختارمند به تحلیل داده‌ها بپردازند.
  • شفافیت: مراحل مشخص و واضح این روش به افزایش شفافیت در تحلیل کمک می‌کند.
  • انعطاف‌پذیری: این روش می‌تواند در زمینه‌های مختلف و با انواع داده‌های کیفی مورد استفاده قرار گیرد.

4. مزایا و معایب

مزایا:

  • امکان شناسایی مضامین عمیق و پیچیده
  • ایجاد یک نمای کلی از داده‌ها
  • کمک به درک بهتر روابط بین مضامین

معایب:

  • زمان‌بر بودن فرآیند تحلیل
  • نیاز به مهارت‌های خاص در کدگذاری و تحلیل داده‌ها
  • ممکن است نتایج تحت تأثیر پیش‌داوری‌های محقق قرار گیرد

5. نتیجه‌گیری

تحلیل مضمون با روش اترید-استرلینگ یکفی است که به محققان کمک می‌کند تا مضامین و الگوهای موجود در داده‌ها را شناسایی و تحلیل کنند. این روش به ویژه در زمینه‌های اجتماعی و انسانی کاربرد دارد و می‌تواند به درک بهتر مسائل پیچیده کمک کند.

همچنین مطالعه کنید:

چگونه با چت چیپیتی chat gpt در کمتر از یک ساعت یک مقاله علمی نوشتند؟

اگر زود عصبانی می شوید شاید این ویتامین را کم دارید؟

نوشته

برخی از روش‌ها و فنون مورد استفاده در تحلیل مضمون را توضیح دهید؟

تحلیل رگرسیون چیست؟

تحلیل واریانس (ANOVA) چیست؟

تحلیل آماری statistical analysis

تحليل عاملي و بار عاملي در نرم افزار Smart PLS

تحليل عاملي و بار عاملي در نرم افزار Smart PLS

در این مقاله در خصوص تحلیل عاملی و بار عاملی در نرم افزار اسمارت پی ال اس گفتگو می کنیم.

الف- تحليل عاملي

يکي از مشکلاتي که محققان در تحقيق خود با آن مواجه هستند، کاهش حجم متغيرها و يا تشکيل ساختاري جديد براي آنها مي باشد. که بدين منظور از روش تحليل عاملي استفاده مي شود.

تحليل عاملي بر اساس ملاک هاي تجربي و عملي، تعداد متغيرهايي را که خيلي زياد هستند را به چند عامل کاهش مي دهد و تجزيه و تحليل آنها را ساده تر مي کند.

تحليل عاملي، عمل کاهش متغيرها به عامل را از طريق گروه بندي کردن متغيرهايي که با هم همبستگي متوسط و يا نسبتا زيادي دارند، انجام مي دهد.

تحليل عاملي بر دو نوع است:

الف-1- تحليل عاملي اکتشافي (efa)

در تحليل عاملي اکتشافي، محقق با هدف کشف ساختاري براي شکل دهي متغيرها و طبقه بندي آنهاست و پيش فرض اوليه آن است که هر متغيري ممکن است با هر عاملي ارتباط داشته باشد. به عبارت ديگر پژوهشگر در اين روش هيچگونه فرضيه قبلي درباره نتايج ندارد و در پي اکتشاف عوامل تاثير گذار است. بنابراين، تحليل اکتشافي بيشتر به عنوان يک روش تدوين و توليد نظريه و نه آزمون نظريه در نظر گرفته مي شود.

در اين روش پژوهشگر سعي مي کند تأييدي بر يک ساختار عاملي فرض شده ارائه دهد. يعني تعيين مي کند که داده ها با يک ساختار عاملي معين که در فرضيه آمده است هماهنگ است يا خير. تحليل عاملي تأييدي براي سنجش روايي شاخص هاي يک سازه در پرسشنامه نيز به کار برده مي شود تا معلوم گردد هماهنگي و همسويي لازم بين شاخص ها وجود دارد. به بيان ديگر، تحليل عاملي تأييدي ابزاري است براي سنجش روايي پرسشنامه. يعني پرسشنامه چيزي را اندازه بگيرد که براي اندازه گيري آن ساخته شده است.

برخلاف تحليل عاملي اکتشافي، در تحليل عاملي تأييدي پيش فرض اساسي آن است که مطابق با تئوري پيشين، هر عاملي با زير مجموعه ي خاصي از متغيرها ارتباط دارد.

کاربرد مهم تحليل عاملي تأييدي، بررسي برازش مدل حاوي سوال هاي يک متغير است.

قابل ذکر است این مجموعه تخصصی، آموزش ویدئویی تحلیل عاملی تاییدی مرتبه اول و دوم، البته در نرم افزار دیگر معادلات ساختاری یعنی با نرم افزار لیزرل، تهیه نموده است. برای اطلاعات بیشتر در خصوص این آموزش و دریافت آن، این صفحه را ببینید:

ب- بار عاملي

بار عاملي مقدار عددي است که ميزان شدت رابطه ميان يک متغير پنهان و متغير آشکار مربوطه را طي فرآيند تحليل مسير مشخص مي کند. هرچه مقدار بار عاملي يک شاخص در رابطه با يک سازه مشخص بيشتر باشد، آن شاخص سهم بيشتري در تبيين آن سازه ايفا مي کند. همچنين اگر بار عاملي يک شاخص منفي باشد، نشان دهنده تاثير منفي آن در تبيين سازه مربوطه مي باشد. به بيان ديگر سوال مربوط به آن شاخص به صورت معکوس طراحي شده است.

نرم افزار Smart PLS  تحليل عاملي تأييدي را براي بررسي روايي پرسشنامه به صورت کامل انجام داده و از روش هاي مختلف روايي را بررسي مي کند و همچنين در خروجي اين نرم افزار بارهاي عاملي و جدول همبستگي به صورت کاملا مجزا و قابل فهم ارائه مي شود.

سفارش تحلیل داده های آماری برای پایان نامه و مقاله نویسی تحلیل داده های آماری شما با نرم افزارهای کمی و کیفی ،مناسب ترین قیمت و کیفیت عالی انجام می گیرد. نرم افزار های کمی: SPSS- PLS – Amos نرم افزارهای کیفی: Maxquda- NVivo تعیین حجم نمونه با:Spss samplepower Mobile : 09143444846 09143444846 Telegram: https://t.me/RAVA2020 E-mail: abazizi1392@gmail.com

همه چیز درباره بازی کریپتویی همستر کامبت Hamster Kombat

نحوه نوشتن فصل چهارم پایان نامه و تحلیل داده ها

آیا QDA Miner قابلیت تحلیل کمی را برای داده‌های خروجی در نرم‌افزارهای آماری دیگر فراهم می‌کند؟

چگونه یک فایل اکسل را پی دی اف کنیم

نرم افزار کیفی Atlas.ti چیست و چه کاربردهایی دارد؟

برگرفته از اطمینان شرق

تحلیل آماری statistical analysis

روش نوشتن فرضیه

روش نوشتن فرضیه

فرضیه یک حدس علمی است و به عبارتی نتایج تحقیق را پیش بینی می کند.

“یک فرضیه عبارت حدسی رابطه بین دو یا چند متغیر است” (کرلینگر ، 1956). 

“فرضیه گزاره ای رسمی است که رابطه مورد انتظار بین یک متغیر مستقل و وابسته را ارائه می دهد.” (کرسول ، 1994).

فرضیه سازی در تحقیق خیلی مهم است و کل کار را جهت می دهد.

منشأ فرضیه عنوان و اهداف پژوهش می باشد. همان طور که در بالا فرضیه رابطه بین دو یا چند متغیر را بیان می کند. اما همیشه به صورت رابطه ای نوشته نمی شود!

فرضیه گاهی رابطه ی بین دو متغیر را بیان می کند. در این صورت جهت دو طرفه است و هر دو متغیر (یا چند متغیر ) بر همدیگر تأثیر می گذارند. متلا در فرضیه ” بین مدیریت زمان و فرسودگی شغلی رابطه وجود دارد” رابطه دو گانه این دو متغیر بر هم بررسی می شود.

فرضیه گاهی تأثیر یک متغیر را بر متغیر دیگر بیان می کند. در این صورت جهت یک طرفه است و تأثیر یک (یا چند ) متغیر بر متغیر دیگر بررسی می کند. متلا در فرضیه ” مدیریت زمان بر فرسودگی شغلی تأثیر دارد” اثر یک متغیر بر متغیر دیگر بررسی می شود.

فرضیه گاهی تفاوت یک متغیر را در دو یا چند گروه بیان می کند. متلا در فرضیه ” بین میزان فرسودگی شغلی زنان و مردان تفاوت وجود دارد ” تفاوت یک متغیر در دو گروه بررسی می شود.

باید هنگام نوشتن فرضیه به این موارد توجه شود. چون در کل تحقیق و به ویژه در تجزیه و تحلیل داده ها این خیلی مهم و تأثیر گذار است.

گاهاً دانشجویان و محققان تازه کار به این مهم توجه نمی کنند.

خدمات تخصصی پژوهش و تحلیل داده های آماری با مناسب‌ترین قیمت و کیفیت برتر!

🌟با تجربه‌ی بیش از 17 سال و ارائه‌ی بهترین خدمات

مشاوره نگارش: تحلیل داده های آماری

ارائه و طراحی پرسشنامه های استاندارد

📊تحلیل داده های آماری با نرم افزارهای کمی و کیفی

📞 تماس: 09143444846 (پیامک، ایتا، واتساپ، تلگرام)

🌐 کانال تلگرام: عضو شوید

🌐 وبلاگ 

💼کیفیت بالا، قیمت مناسب و خدماتی که به نیازهای شما پاسخ می‌دهند!

💼با ما همراه باشید و پروژه‌ی خود را به یک تجربه‌ی موفق تبدیل کنید.

 

 

پیشنهاد می شود مقالات زیر را هم مطالعه نمایید:

رهبری اخلاقی: اساسی‌ترین عنصر در موفقیت سازمانی

دانلود  پاورپونت روش تحقیق، آمار و پایان نامه نویسی

بهترین زمان مصرف انواع قرص ویتامین D

9 هوش مصنوعی رایگان و کاربردی برای کمک در نوشتن پایان نامه و مقاله

پیش فرض های تحلیل کوواریانس یا Analysis of Covariance (ANCOVA) چیست؟

پیش فرض های تحلیل کوواریانس یا Analysis of Covariance (ANCOVA) چیست؟

در تحلیل کوواریانس (ANCOVA)، چندین پیش‌فرض مهم وجود دارد که باید برآورده شوند تا نتایج آزمون معتبر باشد. این پیش‌فرض‌ها عبارتند از:

  1. پیش‌فرض همبستگی: این پیش‌فرض بیان می‌کند که متغیرهای کوواریانس (متغیرهای کنترلی) باید با متغیر وابسته همبستگی داشته باشند. به عبارت دیگر، متغیرهای کنترلی باید با متغیر وابسته مرتبط باشند تا تحلیل ANCOVA معتبر باشد.
  2. پیش‌فرض همگنیتی: این پیش‌فرض بیان می‌کند که متغیرهای کوواریانس باید برای تمام گروه‌ها یکسان باشند. به عبارت دیگر، میانگین‌های متغیرهای کنترلی باید برای همه گروه‌ها یکسان باشند.
  3. پیش‌فرض همبستگی خطا: این پیش‌فرض بیان می‌کند که خطاها یا باقیمانده‌ها باید برای هر گروه به صورت مستقل از متغیرهای کوواریانس توزیع شوند. به عبارت دیگر، خطاها باید برای هر گروه به صورت مستقل از متغیرهای کنترلی توزیع شوند.
  4. پیش‌فرض نرمالیته: این پیش‌فرض بیان می‌کند که متغیر وابسته و متغیرهای کنترلی باید از توزیع نرمال پیروی کنند.

رعایت این پیش‌فرض‌ها در تحلیل ANCOVA حائز اهمیت است تا نتایج به درستی تفسیر شوند و تحلیل آماری معتبر باشد.

در صورتی که یک یا چند پیش‌فرض برآورده نشود، نتایج ANCOVA ممکن است تحت تأثیر قرار گیرند و تفسیر صحیحی از آن‌ها امکان‌پذیر نباشد.

پیشنهاد می شود مقالات زیر را نیز مطالعه نمایید:

یادگیری سازمانی: راهکارها و روش‌های ارتقاء یادگیری در سازمان‌ها

چه روش‌های آماری برای تحلیل داده‌ها در تحقیق آزمایشی استفاده می‌شود؟

انواع مقیاس های اندازه گیری با ذکر مثال

معرفی نرم افزارهای تحلیل آماری (LISREL، AMOS، EQS، PLS)

تحلیل داده های آماری

سفارش تحلیل داده های آماری برای پایان نامه و مقاله نویسی تحلیل داده های آماری شما با نرم افزارهای کمی و کیفی ،مناسب ترین قیمت و کیفیت عالی انجام می گیرد. نرم افزار های کمی: SPSS- PLS – Amos نرم افزارهای کیفی: Maxquda- NVivo تعیین حجم نمونه با:Spss samplepower Mobile : 09143444846 09143444846 Telegram: https://t.me/RAVA2020 E-mail: abazizi1392@gmail.com

پایایی چیست؟

پایایی چیست؟

🔵

پایایی به اندازه گیری مداوم یک روش اشاره دارد. به این معنا که اگر آن روش در شرایط مشابه اما در زمان های مختلف یا توسط محققین مختلف و در شرایط یکسان به کار برده شود، نتیجه مشابهی حاصل شود.

بنابراین می گوییم روش اندازه گیری قابل اتکاست.

برای مثال اگر دمای یک نمونه مایع را چندین بار در شرایط یکسان اندازه گیری کنیم، دماسنج هر بار دمای یکسانی را نشان دهد، در این صورت می گوییم نتایج پایا هستند.

مقالات زیر را نیز مطالعه نمایید:

برای سفید شدن پوست صورت چه ویتامینی بخوریم؟

انواع روش  های تحقیق آمیخته

کاربرد هوش مصنوعی در آموزش چیست؟

رابطه مصرف قارچ و دیابت

چه روش‌های آماری برای تحلیل داده‌ها در تحقیق آزمایشی استفاده می‌شود؟