بایگانی دسته: آموزش Spss اس پی اس اس

آزمون فریدمن (Friedman Test)

آزمون فریدمن (Friedman Test) نوعی آزمون رتبه‌بندی غیرپارامتری است که برای مقایسه‌ی سه یا بیشتر گروه در یک متغیر کیفی مستقل با دو یا بیشتر گروه در یک متغیر وابسته به کار می‌رود.

 این آزمون از رتبه‌بندی داده‌ها برای تشخیص تفاوت معنادار بین گروه‌ها استفاده می‌کند

. آزمون فریدمن ابتدا داده‌ها را به صورت رتبه‌بندی می‌کند و سپس میزان تفاوت بین گروه‌ها را با استفاده از رتبه‌بندی‌ها محاسبه می‌کند.

 اگر تفاوت معناداری بین گروه‌ها وجود داشته باشد، آنگاه آزمون فریدمن نتیجه‌ی مثبت می‌دهد.

توضیحی در باره رتبه بندی و آزمون فریدمن:

و فقط رتبه یا ترتیب داده‌ها مهم است. برای مثال، در یک آزمایش بالینی که سه گروه بیمار داریم و برای هر بیمار امتیازی بر اساس شدت بیماری به آن‌ها داده شده است، می‌توان امتیازها را به رتبه‌هایی تبدیل کرد. در اینجا، اگر بیشترین امتیاز به بیماری شدت داشته باشد، به عنوان رتبه‌ی 1 انتخاب می‌شود و بیماری که کمترین امتیاز را داشته باشد، به عنوان رتبه‌ی 3 انتخاب می‌شود.

آزمون فریدمن برای تحلیل داده‌های رتبه‌بندی شده به کار می‌رود.

این آزمون با استفاده از رتبه‌بندی‌ها، تفاوت معنادار بین سه یا بیشتر گروه را بررسی می‌کند. این آزمون ابتدا مجموع رتبه‌ها را برای هر گروه محاسبه می‌کند و سپس میانگین مجموع رتبه‌ها را برای هر گروه محاسبه می‌کند.

سپس با استفاده از فرمول مناسب، میزان تفاوت معنادار بین گروه‌ها محاسبه می‌شود. اگر این میزان تفاوت معنادار باشد، نتیجه مثبت داده شده و بیانگر این است که تفاوت معناداری بین گروه‌ها وجود دارد.

در نهایت، برای تعیین گروهی که با دیگر گروه‌ها تفاوت معنادار دارد، می‌توان از روش‌هایی مانند تحلیل پست‌ها (Post-hoc analysis) مانند آزمون Dunn-Bonferroni استفاده کرد.

مراحل انجام آزمون فریدمن به شرح زیر است:

فرضیه‌ها: اولین قدم در انجام آزمون فریدمن تعیین فرضیه‌های لازم است. فرض صفر در این آزمون این است که میانگین رتبه‌ها برای تمامی گروه‌ها یکسان است. فرض دیگر در این آزمون فرض آلترناتیو است که بیانگر این است که حداقل یکی از میانگین رتبه‌ها با دیگری متفاوت است.

جمع‌آوری داده‌ها: برای انجام آزمون فریدمن، باید داده‌های مربوط به متغیرهایی که قصد بررسی آن‌ها را دارید، را جمع‌آوری کنید. برای هر گروه، باید رتبه‌بندی شده‌ای از داده‌ها را داشته باشید.

محاسبه آماره آزمون: پس از جمع‌آوری داده‌ها، باید آماره آزمون را محاسبه کنید. این آماره با استفاده از فرمول زیر محاسبه می‌شود:

$X^2 = \frac{12}{n (k + 1)} \sum_{j=1}^k R_j^2 – 3(n+1)$

در این فرمول، $n$ تعداد رکوردها در هر گروه و $k$ تعداد گروه‌هاست. $R_j$ نیز میانگین رتبه گروه $j$ است.

محاسبه مقدار p-value: با توجه به آماره آزمون محاسبه شده، باید مقدار p-value را محاسبه کنید. برای این کار، باید از جدول توزیع کای-مردانژ استفاده کنید.

تفسیر نتایج: پس از محاسبه مقدار p-value، باید آن را با سطح معناداری مشخص شده مقایسه کنید. اگر مقدار p-value کمتر از سطح معناداری باشد، فرض صفر رد می‌شود و می‌توان نتیجه گرفت که میانگین رتبه‌ها برای حداقل یکی از گروه‌ها با گروه دیگری متفاوت است.

محاسبه تفاوت رتبه‌ها (اختیاری): در صورتی که آزمون فریدمن نتایج مثبت داشته باشد، می‌توان از طریق آزمون تفاوت رتبه‌های ویلکاکسون، تعیین کرد که کدام گروه‌ها با یکدیگر متفاوت هستند. این آزمون برای مقایسه دو به دوی میانگین رتبه‌ها بین گروه‌ها استفاده می‌شود.

آزمون فریدمن و توزیع نرمال:

آزمون فریدمن یک آزمون غیرپارامتری است و برای داده‌هایی با توزیع نرمال یا هر توزیع پارامتری دیگری مناسب نیست. برای داده‌هایی که توزیع آن‌ها پارامتری است، از آزمون‌های دیگری مانند آزمون تی یا آنالیز واریانس (ANOVA) استفاده می‌شود.

آزمون فریدمن برای داده‌هایی که توزیع آن‌ها ناشناخته است و یا توزیع آن‌ها پارامتری نیست، مناسب است. به عنوان مثال، اگر داده‌ها رتبه‌بندی شده باشند یا توزیع آن‌ها نامتقارن باشد، آزمون فریدمن را می‌توان برای تحلیل آن‌ها به کار برد.

آزمون فریدمن در SPSS:

در نرم‌افزار SPSS نیز می‌توان از آزمون فریدمن برای تحلیل داده‌های رتبه‌بندی شده استفاده کرد. برای انجام این آزمون در SPSS، مراحل زیر را می‌توانید دنبال کنید:

وارد کردن داده‌ها: ابتدا داده‌های رتبه‌بندی شده خود را در SPSS وارد کنید.

انتخاب آزمون: از منوی “Analyze” گزینه “Nonparametric Tests” را انتخاب کرده و سپس گزینه “K Independent Samples” را انتخاب کنید.

تنظیمات آزمون: در پنجره‌ی باز شده، متغیر رتبه‌بندی شده را به عنوان متغیر وابسته و متغیر دسته‌ای را به عنوان متغیر مستقل انتخاب کنید. سپس آزمون فریدمن را انتخاب کنید.

تنظیمات دیگر آزمون: پنجره‌ی تنظیمات دیگر آزمون را باز کرده و مقدار آلفا و تنظیمات دیگر را مطابق با نیاز خود تنظیم کنید.

نتایج آزمون: پس از اجرای آزمون، نتایج آن در صفحه‌ی نتایج SPSS قابل مشاهده هستند. در بخش “Test Statistics”، مقدار آماری آزمون فریدمن، در بخش “Asymptotic Sig. (2-tailed)” مشخص می‌شود. اگر مقدار آماری کمتر از سطح معناداری قرار داده شده باشد، می‌توان نتیجه گرفت که تفاوت معناداری بین گروه‌ها وجود دارد.

برای مشاهده لیست همه ی  پرسشنامه های استاندارد لطفا همین جا روی پرسشنامه استاندارد  کلیک فرمایید.

تحلیل داده های آماری برای پایان نامه و مقاله نویسی ،تحلیل داده های آماری شما با نرم افزارهای کمی و کیفی ،مناسب ترین قیمت و کیفیت عالی انجام می گیرد.نرم افزار های کمی: SPSS- PLS – Amosنرم افزار کیفی: Maxqudaتعیین حجم نمونه با:Spss samplepower

روش های تماس:Mobile :  09143444846  واتساپ – تلگرامکانال تلگرام سایت: برای عضویت در کانال تلگرام سایت اینجا کلیک کنید(البته قبلش فیلتر شکن روشن شود!!) مطالب جالب علمی و آموزشی در این کانال درج می گردد.

تحلیل داده های آماری

روش های نمونه گیری احتمالی و غیر احتمالی

در حالت کلی، روشهای نمونه گیری Sampling Methods به دو دسته نمونه گیری غیر احتمالی و احتمالی تقسیم بندی می شوند.

روش های نمونه گیری غیر احتمالی

در روش های نمونه گیری غیر احتمالی، تمامی افراد از شانس برابر برای انتخاب شدن برخوردار نیستند. این روشها عبارتند:

نمونه گیری آسان یا در دسترس Convenience Sampling : نمونه گیری از تمامی بيماران بستري در يك بخش و يا نمونه گیری از تمامی بيماران مراجعه كننده به كلينيك در یک روزي مشخص و یا نمونه گیری از مشتریان بازدیدکننده از شرکت در یک روز مشخص.

نمونه گیری سهمیه ای Quota Sampling: در اين روش ابتدا تعداد نمونه‌ها مشخص شده و سپس به همراه خطوط راهنمایی برای مصاحبه و پرسشگرى تحويل پرسشگر مى‌گردد تا پرسشگر به ميدان مطالعه رفته و خودش افراد نمونه را با توجه به تعدادى که به وى داده شده انتخاب کند و از طريق مصاحبه با آنها اطلاعات لازم را جمع آوری نمايد. اين روش هرچند مورد حمايت عده‌‌اى قرار گرفته، چون در آن اصل شانس برابر براى کليه افراد جامعه رعايت نمى‌شود، ارزش علمى مطلوب ندارد و نمى‌توان به تعميم نتايج آن اعتماد کرد. البته بسيارى از پژوهشگران مسائل اجتماعى و تجارى و نيز افراد و مؤسساتى که درباره عقايد و گرايش‌هاى انسان‌ها مطالعه مى‌کنند، از اين روش استفاده مى‌نمايند. مؤسسه گالوپ در انتخابات سال ۱۹۴۸ از اين روش استفاده کرد و پيش‌بينى آن درست از آب درنيامد و در انتخابات به جاى ديوئي، ترومن پيروز شد. (وايزبرگ، هربرت ف. و بروس د. براون؛ درآمدى بر تحقيق پيمايشى و تحليل داده‌ها؛ ترجمه جمال عابدي؛ ص ۲۴)

نمونه گيري داوطلبي: داوطلبان روش جدید برای درمان سرطان

نمونه گيري مستمر: بررسي يك بيماري نادر

روشهاي نمونه گيري احتمالاتي: در این روش همه افراد شانس انتخاب شدن دارند. این روش ها عبارتند از:

نمونه گيري تصادفي ساده Simple Random Sampling

ر نمونه گیری تصادفی ساده Simple Random Sampling هر یک از عناصر جامعه ی مورد نظر برای انتخاب شدن، شانس مساوی دارند. در این روش، افراد یا اشیای مورد نیاز از فهرست جامعه ی آماری که به همین منظور شماره گذاری و تهیه شده است به صورت تصادفی انتخاب می شوند. مطابق قانون احتمال، افراد انتخاب شده باید دارای ویژگی هایی همانند جامعه ای باشند که از آن انتخاب شده اند.

نمونه گیری تصادفی را می توان به روش هایی مختلف انجام داد. دو گونه از این روشها بدین شرح اند:
الف) قرعه کشی : با هریک از روشهای معمول آن نوعی نمونه برداری است. مثلا اگر بخواهیم از میان 60 نفر نمونه ای 12 نفری به روش تصادفی انتخاب کنیم، کافی است نام یا شماره ردیف این عده را بدون رعایت ترتیب خاصی روی 60 کارت مختلف بنویسیم و کارت ها را در یک جعبه قرار دهیم.
سپس کارت ها را مخلوط کرده ،12 کارت را یکی پس از دیگری انتخاب کنیم .
ب) جدول اعداد تصادفی: فراهم آوردن وسایل قرعه کشی بی نقص، مخصوصا در گروه های بزرگ
کار آسانی نیست و به جای آن می توان از جدول اعداد تصادفی (random digits table) استفاده کرد . در جدول اعداد تصادفی ارقام صفر تا 9 در تعدادی سطر و ستون گرد آوری شده اند. ترتیب استخراج و تنظیم این اعداد به صورت کاملا تصادفی با روشها و وسایلی مانند قرعه کشی و رایانه انجام می گیرد . نمونه ای از چنین مجموعه تصادفی اعداد را می توان در جدول 1 پیوست همین کتاب ملاحضه کرد که با صد سطر و ده ستون در دو صفحه فراهم شده است . تنظیم اعداد در گروههای 5×5 فقط بدین منظور است که بتوان اعداد را به آسانی خواند. خاصیت اصلی این جدول آن است که احتمال پیش آمدن ارقام 0 تا 9 در هر نقطه آن (در هر سطر یا ستون یا گروه چند در چند آن) برای همه ارقام یکسان و مقداری ثابت است.
روش استفاده از این جدول را برای تشکیل نمونه تصادفی با مثال60=N و 12=n شرح میدهیم.

مراحل نمونه برداری تصادفی ساده

مرحله اول: افراد جامعه را از 1 تا N شماره گذاری کنید. بهتر است این شماره گذاری بدون رعایت ترتیب خاصی انجام گیرد.
مرحله دوم: به طور تصادفی عددی را به عنوان مبدا نمونه برداری در جدول انتخاب کنید. برای مثال عدد 4 که در تقاطع سطر 12 و ستون 5 (جدول 1 پیوست ) واقع شده است.
مرحله سوم: از مبدا نمونه برداری ردیفهایی به تعداد ارقام N در نظر بگیرید.
در این مثال چون N دو رقمی است ردیفهای دو تایی را انتخاب کنید، ولی ساده تر آن است که ابتدا ردیف های عمودی و مجاور هم به کار روند. سپس از ردیف دو ستونی ای که با اعداد 49، 88 و 48 شروع می شود،ا ستفاده کنید.
مرحله چهارم: باید اعداد ردیفهای انتخابی را به ترتیب خواند.N عدد متناسب با شماره گذاری جامعه،شماره ردیف افرادی را نشان می دهد که باید در نمونه انتخاب شوند.عدد متناسب، عددی است که در فاصلۀ 1 تا N واقع شده است. پس در این مثال به 49، 88، 48، 77، 77، 89، 31، 23، 42، 09، 47، 13، 58، 19، 24 و 46 توجه داشته باشید که:
اول، اعدادی مانند 88، 77 و 88 که خارح از دامنة شماره گذاری جامعه اند به حساب نیاورید.
دوم، هر عدد مکرر را فقط یک بار به حساب آورید.
سوم، اگر عدد N ضریب کامل 10 باشد باید تعداد ستونها را یک واحد کمتر از N در نظر گرفت. مثلا در جامعه ای 100 نفری می توان با دو ستون اعداد تصادفی نمونه برداری کرد و عدد 00 را به جای شماره 100 پذیرفت. این روش ساده تر را به منزله ی این است که افراد جامعه به جای 1 تا N از صفر تا N-1 شماره گذاری شوند. یکی از مشکلات روش نمونه گیری تصادقی ساده، تهیه و تدوین فهرست افراد جامعه ی آماری است، چرا که در بسیاری از موارد چنین کاری قبلا انجام نشده است.

نمونه گیری تصادفی ساده
نکته مهم برای پژوهشگران و دانشجویان جهت تکمیل پایان نامه خود این است که برای انتخاب یک نمونه به روش تصادفی ساده می توان از دو روش با جای گذاری و بدون جایگزاری بهره برد. در شیوه نمونه گیری با جای گذاری، هر نمونه پس از اینکه انتخاب شد مجددا به جامعه بازگردانده می شود و این شانس را خواهد داشت که حتی در انتخاب های بعدی نیز برای نمونه انتخاب شود


نمونه گيري تصادفي سیستماتیک Systematic Random Sampling

روش نمونه گیری منظم یا نمونه گیری سیستماتیک

روش نمونه گیری سیستماتیک Systematic Random Sampling روش تغییر شکل یافته ی نمونه گیری تصادفی ساده است. در این روش عناصر نمونه از فهرست افراد یا جامعه اماری که به همین منظور آماده شده است انتخاب می شوند. برای مثال فرض کنید از جامعه ای که 2 هزار عضو دارد می خواهیم 100 عضو را انتخاب کنیم. نمونه مورد نظر را می توان از روی فهرست،20 نفر، انتخاب کرد (100÷2000=20). نقطه شروع نمونه گیری عبارت است از هر عضوی که دارای شماره مساوی یا کوچک تر از 20 است؛ این نقطه به صورت تصادفی انتخاب می شود.

این روش برای آن دسته از جوامع آماری که کد از پیش تعیین شده و مرتبی دارند (همانند شماره کارمندی، دانشجویی و پلاک منازل) کاربرد فراوان دارد. با مشخص شدن اولین عضو نمونه، سایر اعضای نمونه در این روش معین می شوند. این خاصیت از یک سو یکی از محاسن روش تلقی و از سوی دیگر موجب از دست رفتن شانس انتخاب برای سایر اعضای جامعه می شود. به عبارت دیگر، خاصیت تصادفی بودن عناصر نمونه برخلاف روش نمونه گیری تصادفی ساده با علامت سوال همراه است.

دقت نمونه گیری تصادفی سیستماتیک زمانی که ترتیب واحدهای جامعه به صورت تصادف باشد، دقیقا معادل با نمونه گیری تصادفی ساده است. نمونه گیری سیستماتیک و منظم زمانی که ترتیب واحدهای جامعه بر اساس صفتی مرتبط با مورد تخمین باشد، بهتر و دقیق تر از نمونه گیری تصادفی ساده و حتی بهتر از نمونه گیری طبقه ای و یا گروهی است. همچنین اجرای نمونه گیری سیستماتیک ساده و کم هزینه است.

مثال نمونه گیری سیستماتیک:

به عنوان مثال برای 12 جامعه زیر، اگر بخواهیم 4 نمونه انتخاب کنیم باید فاصله نمونه گیری برابر 3 باشد.


نمونه گيري تصادفي گروهی Stratified Random Sampling


روش نمونه گیری طبقه ای یا نمونه گیری گروهی

برای بیشتر کردن شباهت نمونه و جامعه و افزایش دقت نمونه برداری برای برآورد پارامترهای جامعه و دخالت دادن ویژگی های جامعه در نمونه، در روش نمونه گیری طبقه ای Stratified Random Sampling (نمونه گیری گروهی) جامعه به گروه های متجانس تقسیم و هر گروه از افرادی تشکیل می شود که ویژگی هایی مشابه دارند. پس از تقسیم جامعه به گروههای متجانس، تعداد نمونه نسبت به هر گروه مشخص و سپس با استفاده از روش نمونه گیری تصادفی ساده یا منظم، تعداد عناصر مورد نیاز از هر گروه انتخاب می شود. از روش نمونه گیری طبقه ای (نمونه گیری گروهی) هنگامی استفاده می شود که محقق اطمینان داشته باشد که اعضای جامعه مورد بررسی، از نظر یک سری ویژگی ها (صفات) با هم متفاوت باشند. در روش نمونه تصادفی ساده، به این ویژگی ها توجهی نمی شود.

نمونه گیری طبقه ای یا نمونه گیری گروهی

مثال نمونه گیری طبقه ای یا نمونه گیری گروهی Stratified Random Sampling:

هدف از این مثال، تحقیق و بررسی وضعیت عملکرد واحد های مختلف سازمان است. در این تحقیق تعداد کارمندان در هر واحد تولید 133 نفر و واحد خدمات 59 نفر. بررسی ها نشان می دهد که باید یک نمونه 80 نفره را از کل سازمان انتخاب و تعداد نمونه ها را بر حسب هر گروه (واحد) مشخص کرد.

از آنجا که مدیریت به تاثیر واحد کاری در عملکرد اعتقاد دارد پس باید نسبت کارمندان هر واحد به کل کارمندان سازمان را در نمونه 80 تایی رعایت کرد.حاصل عملیات نمونه گیری گروهی برای تعیین عناصر نمونه هرگروه در جدول زیر آمده است.

تعيين نمونه هاي مورد نياز در نمونه گیری طبقه ای
چنان که مشخص است براساس سطر آخر جدول بالا، باید از واحد مالی 24 نفر ،اداری 30 نفر، واحد تولید 18 نفر و خدمات 8 نفر را به عنوان نمونه انتخاب کرد.

نمونه گيري تصادفي خوشه اي Cluster Random Sampling 

روش نمونه گیری خوشه ای

هر گاه جامعه مورد بررسی خیلی وسیع و گسترده باشد و تهیه فهرست تمامی اعضای جامعه امکان پذیر نباشد انتخاب نمونه از نظر اجرایی مشکل به نظر می رسد. برای مثال، فرض کنید میخواهیم میزان تحصیلات کارمندان یک شهر بزرگ را بررسی کنیم. انتخاب نمونه با استفاده از روشهای مذکور دشوار است و به دقت و هزینه زیاد نیاز دارد اما با استفاده از نمونه گیری خوشه ای Cluster Sampling می توان واحد نمونه گیری را «سازمان » تعریف کرد. ابتدا چند سازمان (خوشه ) را به صورت نمونه گیری تصادفی ساده یا سامان مند و سپس کارمندان مورد نیاز را از بین این سازمانها انتخاب می کنیم.

تفاوت روش نمونه گیری گروهی و نمونه گیری خوشه ای Cluster Sampling در این است که در روش گروهی تهیه فهرست اعضای جامعه (چهارچوب نمونه گیری ) امکان پذیر است ولی در خوشه ای این کار مقدور نیست. اگر جمعيت گسترده و پراكنده باشد روش مناسبي است. بايد توجه داشت كه هر چه حجم خوشه ها بیشتر باشد و شباهت افراد آن خوشه از نظر صفت متغير مورد بررسي زیاد باشد، دقت نمونه گيري خوشه اي كمتر خواهد شد.

نمونه گیری خوشه ای

مثال: بررسي شيوع عفونت هاي روده اي در روستاهاي استان فارس
چند روستا از استان فارس انتخاب شده و شیوع عفونت در افراد آن روستاها مورد بررسی قرار میگیرد.

تفاوت بین نمونه گیری خوشه ای با نمونه گیری طبقه ای یا گروهی

الف-در نمونه گیری تصادفی طبقه ای یا گروهی از هر طبقه یا گروه تعدادی را به عنوان نمونه انتخاب می کنیم در حالی که در نمونه گیری خوشه ای Cluster sampling، نمونه از تعدادی از خوشه ها انتخاب می شود.
ب- در نمونه گیری طبقه ای، دقت نمونه گیری تابع مستقیمی با همگنی (مشابهت) درون طبقات و ناهمگنی (عدم مشابهت) بین طبقات است. اما دقت نمونه گیری تصادفی خوشه ای تابع مستقیم با ناهمگنی (عدم مشابهت) درون خوشه ها و همگنی (مشابهت) بین خوشه ها است.


نمونه گيري چند مرحله ای multistage sampling

روش نمونه گیری چند مرحله ای

نمونه گیری مرحله ای multistage sampling، شکل گسترده یافته ی نمونه گیری خوشه ای است. در این روش عناصر نمونه اصلی طی چند مرحله انتخاب می شوند یعنی انتخاب نمونه از نمونه ی دیگر. مثلا می توان در مثال نمونه گیری خوشه ای، ابتدا چند سازمان را به طور تصادفی از یک شهر برگزید و سپس از بین هر سازمان چند واحد سازمانی را معین و پس از آن عناصر نمونه را از هر واحد به طور تصادفی انتخاب کرد. به طور کلی باید گفت در روش نمونه گیری مرحله ای، در هر مرحله یک شرط بر روی اعضای جامعه گذاشته می شود و به این طریق نمونه مورد نظر را انتخاب می کنند.

مثال از نمونه گیری خوشه ای چند مرحله ای

برای مثال در برآورد هوش معندی مدیران یک شرکت هلدینگ، می توان مدیران را در سه مرحله با استفاده از واحدهای نمونه گیری مختلف زیر به صورت زیر انتخاب کرد:
واحد مرحله اول: هلدینگ شرکت 1 شرکت 2 …… شرکت 10
واحد مرحله دوم: واحد مدیریت واحد مدیریت 1 و 2 واحد مدیریت 3 و 4 ….. واحد مدیریت 19 و 20
واحد مرحله سوم: مدیران 1، 2، 3، . . . . 58، 59، 60
در مثال فوق ابتدا جامعه مدیران, به شرکت هایی تقسیم شده است. در این مرحله که مرحله اول نمونه گیری است، از میان شرکت های انتخاب شده، دو واحد مدیریت (واحد مرحله دوم) انتخاب شده است. در اینجا از واحد مدیریت شماره یک، مدیران 1 و 2 و از واحد مدیریت شماره دوم مدیران 3 و 4 و بالاخره از واحد مدیریت دهم، مدیران 19 و 20 به طور تصادفی انتخاب شده اند.
در مجموع 60 مدیر (3*2*10 = 60) از 20 واحد مدیریت و 10 شرکت وابسته به هلدینگ انتخاب شده است.
دقت نمونه گیری خوشه ای چند مرحله ای در مقایسه با نمونه گیری خوشه ای بیشتر است به این دلیل که در نمونه گیری خوشه ای چند مرحله ای واحدهای نمونه مرحله نهایی انتخابی از پراکندگی سطح جامعه انتخاب شده و تغییرات متغیر مورد مورد نظر در نمونه، می تواند معرف تغییرات در جامعه باشد. در حالی که در نمونه گیری خوشه ای چنین امری میسر نمی باشد.

نمونه گیری چند مرحله ای

روش های نمونه گیری احتمالی و غیر احتمالی

برگرفته از پایگاه امین آرتیکل

انجام تحلیل پروژه های آماری با نرم افزارهای مختلف کمی . کیفی انجاک می گیرد. برای توضیحات بیشتر کلیک کنید.

کتاب-آموزش-تصویری-نمونه-گیری-با-SPSS-Sample-Power.jpg

دانلود کتاب آموزش تصویری نمونه گیری با SPSS Sample Power

دانلود کتاب آموزش تصویری نمونه گیری با SPSS Sample Power

مبحث حجم نمونه و نحوه محاسبه آن یکی از مباحث بسیار کلیدی در تحقیقات است .

معمولاً محققین در این خصوص سوالات بسیاری دارند.

اکثر پژوهشگران در تعیین حجم نمونه دچار اشکالی اساسی هستند.

چون معمولاً برای تعیین حجم نمونه از فرمول کوکران یا جدول کرجسی و مورگان استفاده می کنند.

با توجه به اینکه این فرمول ها بر اساس پارامتر نسبت طراحی شده اند در بسیاری از مورد کاربرد ندارند.

لذا محققان در دفاع از پایان نامه یا پذیرش مقاله در مجلات معتبر علمی دچار درد سر بزرگ می کند.

کتاب آموزش تصویری نمونه گیری با SPSS Sample Power

برای حل این مشکل باید از نرم افزار های تعیین حجم نمونه مانند IBM SPSS Sample power بهره گرفت.

کتاب تصویری نمونه گیری با SPSS Sample Power این نرم افزار را به صورتی ساده با ارائه مثال های کاربردی و با فرضیه های مختلف آموزش می دهد.

بعد از پرداخت هزینه می توانید آن را مستقیما دانلود نمایید یا اینکه با یکی از روش های زیر با ما تماس بگیرید تا خدمتتان ارسال گردد.

توجه: فروش نسخه ی الکترونیکی این کتاب فقط در این سایت ارائه می شود و ارائه آن در هر سایت یا کانال دیگری ممنوع می باشد و پیگرد قانونی دارد.

دانلود رایگان صفحات اولیه (فهرست مطالب) و مشخصات کتاب

برای دانلود کامل ابتدا از طریق کلید هزینه آن را پرداخت و بعد دانلود نمائید.

در صورت هر گونه مشکل در پرداخت یا دانلود فایل با یکی از روش های زیر با ما در تماس باشید.

روش های تماس:

Mobile :  09143444846  واتساپ – تلگرام

Telegram: @abazizi

کتاب تصویری نمونه گیری با SPSS Sample Power این نرم افزار را به صورتی ساده با ارائه مثال های کاربردی آموزش می دهد.

بعد از پرداخت هزینه می توانید آن را مستقیما دانلود نمایید یا اینکه با یکی از روش های زیر با ما تماس بگیرید تا خدمتتان ارسال گردد.

توجه: فروش نسخه ی الکترونیکی این کتاب فقط در این سایت ارائه می شود و ارائه آن در هر سایت یا کانال دیگری ممنوع می باشد و پیگرد قانونی دارد.

کتاب-آموزش-تصویری-نمونه-گیری-با-SPSS-Sample-Power.jpg
کتاب آموزش تصویری نمونه گیری با SPSS Sample Power

 دانلود کتاب آموزش تصویری نمونه گیری با SPSS Sample Power (برای اولین بار در ایران)

 دانلود کتاب آموزش تصویری نمونه گیری با SPSS Sample Power (برای اولین بار در ایران)

کتاب-آموزش-تصویری-نمونه-گیری-با-SPSS-Sample-Power.jpg

مبحث حجم نمونه و نحوه محاسبه آن یکی از مباحث بسیار کلیدی در تحقیقات است .

معمولاً محققین در این خصوص سوالات بسیاری دارند.

اکثر پژوهشگران در تعیین حجم نمونه دچار اشکالی اساسی هستند.

چون معمولاً برای تعیین حجم نمونه از فرمول کوکران یا جدول کرجسی و مورگان استفاده می کنند.

با توجه به اینکه این فرمول ها بر اساس پارامتر نسبت طراحی شده اند در بسیاری از مورد کاربرد ندارند.

لذا محققان در دفاع از پایان نامه یا پذیرش مقاله در مجلات معتبر علمی دچار درد سر بزرگ می کند.

برای حل این مشکل باید از نرم افزار های تعیین حجم نمونه مانند IBM SPSS Sample power بهره گرفت.

کتاب تصویری نمونه گیری با SPSS Sample Power این نرم افزار را به صورتی ساده با ارائه مثال های کاربردی آموزش می دهد.

برای هر نمونه از فرضیه ها یک نمونه کاربردی آورده شده است.

بعد از مطالعه این کتاب افراد قادر خواهند بود به راحتی نمونه ی آماری خود را با این نرم افزار تعیین کنند.

بعد از پرداخت هزینه می توانید آن را مستقیما دانلود نمایید یا اینکه با یکی از روش های زیر با ما تماس بگیرید تا خدمتتان ارسال گردد.

توجه: فروش نسخه ی الکترونیکی این کتاب فقط در این سایت ارائه می شود و ارائه آن در هر سایت یا کانال دیگری ممنوع می باشد و پیگرد قانونی دارد.

دانلود رایگان صفحات اولیه (فهرست مطالب) و مشخصات کتاب

کتاب آموزش تصویری نمونه گیری با SPSS Sample Power

دانلود کتاب آموزش تصویری نمونه گیری با SPSS Sample Power

کتاب-آموزش-تصویری-نمونه-گیری-با-SPSS-Sample-Power.jpg

دانلود کتاب آموزش تصویری نمونه گیری با SPSS Sample Power

مبحث حجم نمونه و نحوه محاسبه آن یکی از مباحث بسیار کلیدی در تحقیقات است .

معمولاً محققین در این خصوص سوالات بسیاری دارند.

اکثر پژوهشگران در تعیین حجم نمونه دچار اشکالی اساسی هستند.

چون معمولاً برای تعیین حجم نمونه از فرمول کوکران یا جدول کرجسی و مورگان استفاده می کنند.

با توجه به اینکه این فرمول ها بر اساس پارامتر نسبت طراحی شده اند در بسیاری از مورد کاربرد ندارند.

لذا محققان در دفاع از پایان نامه یا پذیرش مقاله در مجلات معتبر علمی دچار درد سر بزرگ می کند.

کتاب آموزش تصویری نمونه گیری با SPSS Sample Power

برای حل این مشکل باید از نرم افزار های تعیین حجم نمونه مانند IBM SPSS Sample power بهره گرفت.

کتاب تصویری نمونه گیری با SPSS Sample Power این نرم افزار را به صورتی ساده با ارائه مثال های کاربردی و با فرضیه های مختلف آموزش می دهد.

بعد از پرداخت هزینه می توانید آن را مستقیما دانلود نمایید یا اینکه با یکی از روش های زیر با ما تماس بگیرید تا خدمتتان ارسال گردد.

توجه: فروش نسخه ی الکترونیکی این کتاب فقط در این سایت ارائه می شود و ارائه آن در هر سایت یا کانال دیگری ممنوع می باشد و پیگرد قانونی دارد.

دانلود رایگان صفحات اولیه (فهرست مطالب) و مشخصات کتاب

برای دانلود کامل ابتدا از طریق کلید هزینه آن را ÷رداخت و بعد دانلود نمائید.

در صورت هر گونه مشکل در پرداخت یا دانلود فایل با یکی از روش های زیر با ما در تماس باشید.

روش های تماس:

Mobile :  09143444846  واتساپ – تلگرام

Telegram: @abazizi

وبلاگ ما

کتاب آموزش تصویری نمونه گیری با SPSS Sample Power
کتاب آموزش تصویری نمونه گیری با SPSS Sample Power
آموزش پیشرفته sPSS

جلسه 16 آموزش پیشرفته Spss : آموزش اجرا و تفسیر آزمون های یومن ویتنی (Mann-Whitney U) و مجموع رتبه های ویلکاکسون( Wilcoxon Rank W ) در Spss

این آزمون  توسط آماریست هایی به نام‌های «هنری مَن» (Henry Mann) و «دونالد ویتنی» (Donald Ransom Whitney) در سال ۱۹۴۷ مطرح شده اند.

 این آزمون از گروه روش‌های ناپارامتری است و بنابراین نسبت به مشابه پارامتری خود زمانی که داده‌ها دارای توزیع نرمال باشند، از توان کمتری برخوردار است.

ی زمانی که اندازه نمونه کوچک یا چولگی توزیع داده‌ها زیاد باشد بهتر است از آزمون‌های ناپارامتری مانند این آزمون برای مطابقت بین دو توزیع استفاده شود.

در فیلم زیر  به بررسی این آزمون  و روش اجرای آن در  SPSS استفاده خواهیم پرداخت.

تحلیل داده های آماری

تحلیل داده های آماری (فصل 4 پایان نامه و مقاله) با کیفیت بالا، در اسرع وقت و قیمت چند سال قبل!!

هزینه تحلیل داده های آماری فصل 4 پایان نامه و مقاله با کیفیت بالا، در اسرع وقت و قیمت چند سال قبل!!

دیروز در یکی از گروه های پژوهشی که مخاطبان آن اکثراً محقق با مدرک تحصیلی دکتری و حداقل ارشد هستند چند نفر اعتراض داشتند به کار یکی از آماریست ها مبنی بر اینکه حدود 6 ماهه کار و هزینه را از ما گرفته ولی تا کنون گزارش را تحویل نداده است! از شواهد هم برمی آمد که هزینه میلیونی و چند میلیونی گرفته! این تیپ به اصطلاح  آماریست ها اکثراً تبلیغات زیادی دارند و در شبکه های اجتماعی خود را متخصص معرفی می کنند و … در حالیکه در اصل کار را خودشان انجام نمی دهند و به اصطلاح برون سپاری می کنند به همین خاطر نمی توانند بعدا پاسخگو باشند.!

بر این اساس واجب دانستم که کار خود را برای یکبار دیگر معرفی کنم.

از لحاظ زمانی: پروسه کار تحلیل ما اکثر در 1 الی 2 روز نهایتاً 4 روز طول می کشد (البته اگر طرح تحقیق اشکال نداشته باشد)

قبل از شروع تحلیل ،  فصل اول و سوم به صورت کاملاً رایگان و- البته  در صورت رضایت دانشجو-  بررسی و مشکلات احتمالی به وی گزارش می گردد تا اصلاح گردد.

هزینه انجام کار ما پایین و در حدود 700 هزار 1 میلیون تومان یعنی قیمت 2 – 3 سال قبل می باشد!

قبل از انجام کار از دانشجو و محقق هزینه ای دریافت نمی گردد، البته در صورت اتمام کار هزینه به صورت یکجا دریافت و بعد از آن گزارش تحلیل ، داده ها و خروجی نرم افزار در اختیار وی قرار می گیرد.

تحلیل با نرم افزار های مختلف انجام می گیرد تا رضایت دانشجو و استاد راهنما تأمین گردد.

در صورت درخواست دانشجو فیلم آموزشی نحوه ی دفاع و توضیحات ضروری تحلیل در اختیار وی قرار می گیرد.

سعی می شود ، اشکالی در تحلیل نباشد، اما در صورت  وجود هر گونه مشکل، در اسرع وقت اصلاح می گردد و تا لحظه دفاع با دانشجو خواهیم بود.

این را به خاطر داشته باشید که هزینه تحلیل در جاهای دیگر در حدود 2 تا 3 میلیون تومان می باشد.

تحلیل با نرم افزارهای زیر پذیرفته می شود:


نرم افزار های کمی: SPSS- PLS – Amos

نرم افزار کیفی: Maxquda

تعیین حجم نمونه با:Spss samplepower

روش های تماس:

موبایل: 09143444846 پیامک و تماس

یا پیام از طریق واتساپ–تلگرام(با واتساپ سریع تر جواب داده می شود) به شماره 09143444846

ایمیل

وبسایت: https://rava20.ir/

آموزش پیشرفته sPSS

جلسه 15 آموزش پیشرفته Spss : آزمون t ولچ:

این آزمون نیز مانند آزمون t دو نمونه جهت مقایسه میانگین دو جامعه استفاده می شود.

در آزمون t ولچ فرض می شود واریانس دو جامعه برابر نیست.

برای نمونه به منظور بررسی معنی دار بودن تفاوت میانگین نمره نظرات پاسخ دهندگان بر اساس جنسیت در خصوص هر یک از فرضیه های پژوهش استفاده می شود. در فیلم زیر جزئیات این آزمون شرح داده شده است.

برای مشاهده لیست همه ی  پرسشنامه های استاندارد لطفا همین جا روی پرسشنامه استاندارد  کلیک فرمایید.

تحلیل داده های آماری برای پایان نامه و مقاله نویسی ،تحلیل داده های آماری شما با نرم افزارهای کمی و کیفی ،مناسب ترین قیمت و کیفیت عالی انجام می گیرد.

نرم افزار های کمی: SPSS- PLS – Amos

نرم افزار کیفی: Maxquda

تعیین حجم نمونه با:Spss samplepower

روش های تماس:

Mobile :  09143444846  واتساپ – تلگرام

Telegram: @abazizi

وبلاگ ما

مقاله نویسی

تحلیل داده های آماری(فصل 4 پایان نامه)، مقاله و

سفارش تحلیل داده های آماری برای پایان نامه و مقاله و …

تحلیل داده های آماری پایان نامه ، مقاله و …  با کم ترین هزینه و بالاترین کیفیت انجام می گیرید.

تحلیل داده های کمی  با نرم افزارهای SPSS- PLS – Amos و

تحلیل داده ای کیفی با نرم افزارهای کیفی Maxquda و انویو Nvivoانجام می گیرد.

قیمت تحلیل ها بسیار پایین و پایین تر از هر جای دیگر است

تحلیل داده های آماری
تحلیل های کمی با نرم افزار های : SPSS – Amos – Pls تحلیل های کیفی با نرم افزار های : Maxqda – NVivo

و بسته به نوع و میزان کار معمولا بین 700 هزار تا 1 میلیون تومان خواهد بود.

البته تحلیل هایی که کار کم تری دارند با قیمت کمتر انجام می گیرد .

قیمت تحلیل ها بسیار پایین و پایین تر از هر جای دیگر است

توجه کنیداین قیمت در جاهای دیگر بین حداقل 2 تا 3 میلیون می باشد. ما در اینجا فقط برای رعایت حال دانشجویان و شرایط سخت اقتصادی این قیمت ها را در نظر گرفته ایم. در حالی که کار ما با بالاترین کیفیت و پشتیبانی عالی انجام می گیرد.

جهت سفارش با یکی از روش های زیر تماس بگیرید: 

تماس با شماره موبایل  09143444846 بگ یا ارسال اس ام اس یا پیام از طریق واتساپ و  تلگرام 

یا اینکه به ایمیل  abazizi1392@gmail.com پیام بفرستید.

وب سایت: https://rava20.ir/

تخفیف ویژه برای کافی نت داران و  کسانی که بالا 3 سفارش داشته باشند .

کیفیت بالا – قیمت پایین.

آموزش پیشرفته sPSS

آزمون t با دو نمونه مستقل (Independent – Samples)

• وقتی بخواهیم میانگین یک متغیر کمی ( مانند وزن) را در بین دو گروه مستقل ( مانند پسر و دختر) با هم مقایسه کنیم.

•  این آزمون، میانگین دو گروه از پاسخگویان را با یکدیگر مقایسه می کند. از این آزمون برای محاسبه فاصله اطمینان و یا آزمون فرضیه تفاوت میانگین دو جمعیت ( در زمان نامشخص بودن انحراف استاندارد و استقلال نمونه ها از یکدیگر) استفاده می شود.

•جهت مقايسه ميانگين دو جامعه استفاده مي شود. در آزمون t براي دو نمونه مستقل فرض مي شود واريانس دو جامعه برابر است. براي نمونه به منظور بررسي معني دار بودن تفاوت ميانگين نمره نظرات پاسخ دهندگان بر اساس جنسيت در خصوص هر يک از فرضيه هاي پژوهش استفاده مي شود.

•در این آزمون برای بررسی تساوی میانگین دو جامعه باید ابتدا تساوی واریانسها با استفاده از لون بررسی شود. برای استفاده از این آزمون وجود یک متغیر کمی و یک متغیر طبقه ای الزامی است. متغیر کمی همان متغیر وابسته و متغیر مورد مقایسه در دو جامعه است و متغیر طبقه ای متغیر مستقل و متغیری است که جامه ها را از هم جدا می کند.

فرض های آماری:

Ho: µ1- µ2=0

H1: µ1- µ2 ≠0

•مسیر  SPSS:

•Analyze/Compare Means>Independent-Samples T Test

• در کادر محاوره ای  Independent-Samples T Test در جعبه Test Variable(S) متغیر مورد مقایسه ( مثلا“ وزن) و در جعبه Grouping Varaible گروه مورد مقایسه  ( مثلاً جنسبت) را وارد و دکمه Define Groups را می زنیم. مقادیری را که مشخص کننده گروه های هستند ( مثلا“ 1 و 2) تعریف و Continue و سپس OK را کلیک می کنیم تا خروجی در دو جدول ظاهر شود.

•جدول1: Group statistics: شامل تعداد نمونه و شاخص های آماری به تفکیک هر یک از گروه هاست.

•جدول 2 شامل دو قسمت: 1- Leven’s Test: شامل آزمون Leven برای آزمون برابری واریانس هاست. قسمت 2 : t-test : نتایج آزمون است که ستون های آن از چپ به راست عباتند از:  مقدار آماره ی t، درجه آزادی ( df) ، مقدار آزمون دو طرفه، اختلاف میان گین ها ( توجه کنید اگر اختلاف میان گین ها عدد منفی باشد یعنی میانگین گروه 2 بیشتر از گروه 1 بوده است)، خطای استاندارد اختلاف میانگین ها و فاصله اطمینان 95% .

•همه ی این نتایج برای دو حالت بیان شده اند، مقادیر خط اول برای حالت برابری واریانس ها و مقادیر خط دوم برای حالت نابرابری واریانس ها

تفسیر خروجی:

اول جدول 2 ( آزمون لون)  را بررسی می کنیم و  معلوم می کنیم واریانس ها هبرابرند یا نه؟ سپس

برای بررسی  آزمون فرض معمولاً از دو روش استفاده می شود:

1- مقدار P: بر اساس مقدار Sig ، به این صورت است که اگر مقدار P کمتر یا مساوی α باشد، فرض صفر ( H0) را در سطح معنی داری α را رد می کنیم و فرض تحقیق را قبول می کنیم و بر عکس.

2- روش فاصله اطمینان(95%Confidence Interval) : در این بخش دو عدد ( Upper و Lower) وجود دارد. اگر در بین این دو عدد صفر قرار گیرد( یعنی اگر یکی از اعداد منفی و یکی مثبت باشد) دلیل بر عدم اختلاف بین میانگین ها است  پس فرض فرض صفر قبول  و فرض تحقیق رد می گردد ولی گر در بین این دو عدد صفر قرار نگیرد ( یعنی  هر دومنفی و یا هر دو مثبت باشند) دلیل بر اختلاف بین میانگین ها است  پس فرض صفر  رد و فرض تحقیق قبول می گردد .

•هرگاه حد بالا Upper و پایین Lower  هر دو مثبت باشند میانگین از مقدار آزمون بزرگتر است.

•هرگاه حد بالا Upper و پایین Lower  هر دو منفی باشند میانگین از مقدار آزمون کوچک تر است.

•هرگاه حد بالا Upper مثبت و پایین Lower   منفی باشد (یعنی بین آن ها صفر قرار بگیرد) میانگین با مقدار آزمون  تفاوت معنی دار ندارد.

•توجه توجه: SPSS تنها ادعای مساوی را آزمون می کند.

برای مشاهده جزئیات و اجرا و تفسیر نتایج این آزمون فیلم زیر را مشاهده کنید.

جهت مشاهده آموزش نرم افزاری های آماری و … در کانال آپارت اینجا کلیک کن.

برای مشاهده لیست همه ی  پرسشنامه های استاندارد لطفا همین جا روی پرسشنامه استاندارد  کلیک فرمایید.

تحلیل داده های آماری برای پایان نامه و مقاله نویسی ،تحلیل داده های آماری شما با نرم افزارهای کمی و کیفی ،مناسب ترین قیمت و کیفیت عالی انجام می گیرد.

نرم افزار های کمی: SPSS- PLS – Amos

نرم افزار کیفی: Maxquda

تعیین حجم نمونه با:Spss samplepower

روش های تماس:

Mobile :  09143444846  واتساپ – تلگرام

Telegram: @abazizi

وبلاگ ما