...........................................................................................................................................................................................................................................................................................................................................................................
خوش آمدید این سایت دارای مجوز می باشد برای مشاهده مجوز ها پایین صفحه را مشاهده فرمائید.
تحلیل عاملی تاییدی (Confirmatory Factor Analysis) یک روش آماری است که به کمک آن میتوان به تأیید یا رد فرضیاتی درباره ساختار عاملی متغیرها پرداخت. در این روش، فرضیات محدودهای از ساختار عاملی متغیرها پیشنهاد میشود و سپس اطلاعات موجود در دادهها جهت بررسی صحت این فرضیات استفاده میشود.
در تحلیل عاملی تاییدی، یک مدل ساختاری از پیش تعریف شده است و سپس با استفاده از روشهای آماری، فرضیاتی درباره ساختار عاملی مورد بررسی قرار میگیرد. سپس با استفاده از معیارهایی مانند chi-square، comparative fit index (CFI)، root mean square error of approximation (RMSEA) و …، صحت مدل ساختاری مورد بررسی ارزیابی میشود. اگر مدل ساختاری با دادهها مطابقت داشته باشد، میتوان ادعا کرد که فرضیاتی که در ابتدا پیشنهاد شده بود، به خوبی تأیید شده است.
تحلیل عاملی تاییدی معمولاً برای بررسی فرضیات پژوهشی، سنجش سازوکارهای پنهان و تعیین پایایی و اعتبار پرسشنامهها و مقیاسهای روانشناسی استفاده میشود. این روش در پژوهشهای با مقیاس بزرگ و پیچیده، که شامل بسیاری از متغیرها و عوامل هستند، بسیار مفید است.
در کل، تحلیل عاملی تاییدی به عنوان یک ابزار قدرتمند در تحقیقات روانشناسی و دیگر علوم اجتماعی برای تأیید یا رد فرضیاتی درباره ساختار عاملی متغیرها و تعیین پایایی و اعتبار پرسشنامهها و مقیاسها استفاده میشود.
برای مشاهده لیست همه ی پرسشنامه های استاندارد لطفا همین جا روی پرسشنامه استاندارد کلیک فرمایید.
آزمون فریدمن (Friedman Test) نوعی آزمون رتبهبندی غیرپارامتری است که برای مقایسهی سه یا بیشتر گروه در یک متغیر کیفی مستقل با دو یا بیشتر گروه در یک متغیر وابسته به کار میرود.
این آزمون از رتبهبندی دادهها برای تشخیص تفاوت معنادار بین گروهها استفاده میکند
. آزمون فریدمن ابتدا دادهها را به صورت رتبهبندی میکند و سپس میزان تفاوت بین گروهها را با استفاده از رتبهبندیها محاسبه میکند.
اگر تفاوت معناداری بین گروهها وجود داشته باشد، آنگاه آزمون فریدمن نتیجهی مثبت میدهد.
توضیحی در باره رتبه بندی و آزمون فریدمن:
و فقط رتبه یا ترتیب دادهها مهم است. برای مثال، در یک آزمایش بالینی که سه گروه بیمار داریم و برای هر بیمار امتیازی بر اساس شدت بیماری به آنها داده شده است، میتوان امتیازها را به رتبههایی تبدیل کرد. در اینجا، اگر بیشترین امتیاز به بیماری شدت داشته باشد، به عنوان رتبهی 1 انتخاب میشود و بیماری که کمترین امتیاز را داشته باشد، به عنوان رتبهی 3 انتخاب میشود.
آزمون فریدمن برای تحلیل دادههای رتبهبندی شده به کار میرود.
این آزمون با استفاده از رتبهبندیها، تفاوت معنادار بین سه یا بیشتر گروه را بررسی میکند. این آزمون ابتدا مجموع رتبهها را برای هر گروه محاسبه میکند و سپس میانگین مجموع رتبهها را برای هر گروه محاسبه میکند.
سپس با استفاده از فرمول مناسب، میزان تفاوت معنادار بین گروهها محاسبه میشود. اگر این میزان تفاوت معنادار باشد، نتیجه مثبت داده شده و بیانگر این است که تفاوت معناداری بین گروهها وجود دارد.
در نهایت، برای تعیین گروهی که با دیگر گروهها تفاوت معنادار دارد، میتوان از روشهایی مانند تحلیل پستها (Post-hoc analysis) مانند آزمون Dunn-Bonferroni استفاده کرد.
مراحل انجام آزمون فریدمن به شرح زیر است:
فرضیهها: اولین قدم در انجام آزمون فریدمن تعیین فرضیههای لازم است. فرض صفر در این آزمون این است که میانگین رتبهها برای تمامی گروهها یکسان است. فرض دیگر در این آزمون فرض آلترناتیو است که بیانگر این است که حداقل یکی از میانگین رتبهها با دیگری متفاوت است.
جمعآوری دادهها: برای انجام آزمون فریدمن، باید دادههای مربوط به متغیرهایی که قصد بررسی آنها را دارید، را جمعآوری کنید. برای هر گروه، باید رتبهبندی شدهای از دادهها را داشته باشید.
محاسبه آماره آزمون: پس از جمعآوری دادهها، باید آماره آزمون را محاسبه کنید. این آماره با استفاده از فرمول زیر محاسبه میشود:
در این فرمول، $n$ تعداد رکوردها در هر گروه و $k$ تعداد گروههاست. $R_j$ نیز میانگین رتبه گروه $j$ است.
محاسبه مقدار p-value: با توجه به آماره آزمون محاسبه شده، باید مقدار p-value را محاسبه کنید. برای این کار، باید از جدول توزیع کای-مردانژ استفاده کنید.
تفسیر نتایج: پس از محاسبه مقدار p-value، باید آن را با سطح معناداری مشخص شده مقایسه کنید. اگر مقدار p-value کمتر از سطح معناداری باشد، فرض صفر رد میشود و میتوان نتیجه گرفت که میانگین رتبهها برای حداقل یکی از گروهها با گروه دیگری متفاوت است.
محاسبه تفاوت رتبهها (اختیاری): در صورتی که آزمون فریدمن نتایج مثبت داشته باشد، میتوان از طریق آزمون تفاوت رتبههای ویلکاکسون، تعیین کرد که کدام گروهها با یکدیگر متفاوت هستند. این آزمون برای مقایسه دو به دوی میانگین رتبهها بین گروهها استفاده میشود.
آزمون فریدمن و توزیع نرمال:
آزمون فریدمن یک آزمون غیرپارامتری است و برای دادههایی با توزیع نرمال یا هر توزیع پارامتری دیگری مناسب نیست. برای دادههایی که توزیع آنها پارامتری است، از آزمونهای دیگری مانند آزمون تی یا آنالیز واریانس (ANOVA) استفاده میشود.
آزمون فریدمن برای دادههایی که توزیع آنها ناشناخته است و یا توزیع آنها پارامتری نیست، مناسب است. به عنوان مثال، اگر دادهها رتبهبندی شده باشند یا توزیع آنها نامتقارن باشد، آزمون فریدمن را میتوان برای تحلیل آنها به کار برد.
آزمون فریدمن در SPSS:
در نرمافزار SPSS نیز میتوان از آزمون فریدمن برای تحلیل دادههای رتبهبندی شده استفاده کرد. برای انجام این آزمون در SPSS، مراحل زیر را میتوانید دنبال کنید:
وارد کردن دادهها: ابتدا دادههای رتبهبندی شده خود را در SPSS وارد کنید.
انتخاب آزمون: از منوی “Analyze” گزینه “Nonparametric Tests” را انتخاب کرده و سپس گزینه “K Independent Samples” را انتخاب کنید.
تنظیمات آزمون: در پنجرهی باز شده، متغیر رتبهبندی شده را به عنوان متغیر وابسته و متغیر دستهای را به عنوان متغیر مستقل انتخاب کنید. سپس آزمون فریدمن را انتخاب کنید.
تنظیمات دیگر آزمون: پنجرهی تنظیمات دیگر آزمون را باز کرده و مقدار آلفا و تنظیمات دیگر را مطابق با نیاز خود تنظیم کنید.
نتایج آزمون: پس از اجرای آزمون، نتایج آن در صفحهی نتایج SPSS قابل مشاهده هستند. در بخش “Test Statistics”، مقدار آماری آزمون فریدمن، در بخش “Asymptotic Sig. (2-tailed)” مشخص میشود. اگر مقدار آماری کمتر از سطح معناداری قرار داده شده باشد، میتوان نتیجه گرفت که تفاوت معناداری بین گروهها وجود دارد.
برای مشاهده لیست همه ی پرسشنامه های استاندارد لطفا همین جا روی پرسشنامه استاندارد کلیک فرمایید.
در حالت کلی، روشهای نمونه گیری Sampling Methods به دو دسته نمونه گیری غیر احتمالی و احتمالی تقسیم بندی می شوند.
روش های نمونه گیری غیر احتمالی
در روش های نمونه گیری غیر احتمالی، تمامی افراد از شانس برابر برای انتخاب شدن برخوردار نیستند. این روشها عبارتند:
نمونه گیری آسان یا در دسترس Convenience Sampling : نمونه گیری از تمامی بيماران بستري در يك بخش و يا نمونه گیری از تمامی بيماران مراجعه كننده به كلينيك در یک روزي مشخص و یا نمونه گیری از مشتریان بازدیدکننده از شرکت در یک روز مشخص.
نمونه گیری سهمیه ای Quota Sampling: در اين روش ابتدا تعداد نمونهها مشخص شده و سپس به همراه خطوط راهنمایی برای مصاحبه و پرسشگرى تحويل پرسشگر مىگردد تا پرسشگر به ميدان مطالعه رفته و خودش افراد نمونه را با توجه به تعدادى که به وى داده شده انتخاب کند و از طريق مصاحبه با آنها اطلاعات لازم را جمع آوری نمايد. اين روش هرچند مورد حمايت عدهاى قرار گرفته، چون در آن اصل شانس برابر براى کليه افراد جامعه رعايت نمىشود، ارزش علمى مطلوب ندارد و نمىتوان به تعميم نتايج آن اعتماد کرد. البته بسيارى از پژوهشگران مسائل اجتماعى و تجارى و نيز افراد و مؤسساتى که درباره عقايد و گرايشهاى انسانها مطالعه مىکنند، از اين روش استفاده مىنمايند. مؤسسه گالوپ در انتخابات سال ۱۹۴۸ از اين روش استفاده کرد و پيشبينى آن درست از آب درنيامد و در انتخابات به جاى ديوئي، ترومن پيروز شد. (وايزبرگ، هربرت ف. و بروس د. براون؛ درآمدى بر تحقيق پيمايشى و تحليل دادهها؛ ترجمه جمال عابدي؛ ص ۲۴)
نمونه گيري داوطلبي: داوطلبان روش جدید برای درمان سرطان
نمونه گيري مستمر: بررسي يك بيماري نادر
روشهاي نمونه گيري احتمالاتي: در این روش همه افراد شانس انتخاب شدن دارند. این روش ها عبارتند از:
نمونه گيري تصادفي ساده Simple Random Sampling
ر نمونه گیری تصادفی ساده Simple Random Sampling هر یک از عناصر جامعه ی مورد نظر برای انتخاب شدن، شانس مساوی دارند. در این روش، افراد یا اشیای مورد نیاز از فهرست جامعه ی آماری که به همین منظور شماره گذاری و تهیه شده است به صورت تصادفی انتخاب می شوند. مطابق قانون احتمال، افراد انتخاب شده باید دارای ویژگی هایی همانند جامعه ای باشند که از آن انتخاب شده اند.
نمونه گیری تصادفی را می توان به روش هایی مختلف انجام داد. دو گونه از این روشها بدین شرح اند: الف) قرعه کشی : با هریک از روشهای معمول آن نوعی نمونه برداری است. مثلا اگر بخواهیم از میان 60 نفر نمونه ای 12 نفری به روش تصادفی انتخاب کنیم، کافی است نام یا شماره ردیف این عده را بدون رعایت ترتیب خاصی روی 60 کارت مختلف بنویسیم و کارت ها را در یک جعبه قرار دهیم. سپس کارت ها را مخلوط کرده ،12 کارت را یکی پس از دیگری انتخاب کنیم . ب) جدول اعداد تصادفی: فراهم آوردن وسایل قرعه کشی بی نقص، مخصوصا در گروه های بزرگ کار آسانی نیست و به جای آن می توان از جدول اعداد تصادفی (random digits table) استفاده کرد . در جدول اعداد تصادفی ارقام صفر تا 9 در تعدادی سطر و ستون گرد آوری شده اند. ترتیب استخراج و تنظیم این اعداد به صورت کاملا تصادفی با روشها و وسایلی مانند قرعه کشی و رایانه انجام می گیرد . نمونه ای از چنین مجموعه تصادفی اعداد را می توان در جدول 1 پیوست همین کتاب ملاحضه کرد که با صد سطر و ده ستون در دو صفحه فراهم شده است . تنظیم اعداد در گروههای 5×5 فقط بدین منظور است که بتوان اعداد را به آسانی خواند. خاصیت اصلی این جدول آن است که احتمال پیش آمدن ارقام 0 تا 9 در هر نقطه آن (در هر سطر یا ستون یا گروه چند در چند آن) برای همه ارقام یکسان و مقداری ثابت است. روش استفاده از این جدول را برای تشکیل نمونه تصادفی با مثال60=N و 12=n شرح میدهیم.
مراحل نمونه برداری تصادفی ساده
مرحله اول: افراد جامعه را از 1 تا N شماره گذاری کنید. بهتر است این شماره گذاری بدون رعایت ترتیب خاصی انجام گیرد. مرحله دوم: به طور تصادفی عددی را به عنوان مبدا نمونه برداری در جدول انتخاب کنید. برای مثال عدد 4 که در تقاطع سطر 12 و ستون 5 (جدول 1 پیوست ) واقع شده است. مرحله سوم: از مبدا نمونه برداری ردیفهایی به تعداد ارقام N در نظر بگیرید. در این مثال چون N دو رقمی است ردیفهای دو تایی را انتخاب کنید، ولی ساده تر آن است که ابتدا ردیف های عمودی و مجاور هم به کار روند. سپس از ردیف دو ستونی ای که با اعداد 49، 88 و 48 شروع می شود،ا ستفاده کنید. مرحله چهارم: باید اعداد ردیفهای انتخابی را به ترتیب خواند.N عدد متناسب با شماره گذاری جامعه،شماره ردیف افرادی را نشان می دهد که باید در نمونه انتخاب شوند.عدد متناسب، عددی است که در فاصلۀ 1 تا N واقع شده است. پس در این مثال به 49، 88، 48، 77، 77، 89، 31، 23، 42، 09، 47، 13، 58، 19، 24 و 46 توجه داشته باشید که: اول، اعدادی مانند 88، 77 و 88 که خارح از دامنة شماره گذاری جامعه اند به حساب نیاورید. دوم، هر عدد مکرر را فقط یک بار به حساب آورید. سوم، اگر عدد N ضریب کامل 10 باشد باید تعداد ستونها را یک واحد کمتر از N در نظر گرفت. مثلا در جامعه ای 100 نفری می توان با دو ستون اعداد تصادفی نمونه برداری کرد و عدد 00 را به جای شماره 100 پذیرفت. این روش ساده تر را به منزله ی این است که افراد جامعه به جای 1 تا N از صفر تا N-1 شماره گذاری شوند. یکی از مشکلات روش نمونه گیری تصادقی ساده، تهیه و تدوین فهرست افراد جامعه ی آماری است، چرا که در بسیاری از موارد چنین کاری قبلا انجام نشده است.
نکته مهم برای پژوهشگران و دانشجویان جهت تکمیل پایان نامه خود این است که برای انتخاب یک نمونه به روش تصادفی ساده می توان از دو روش با جای گذاری و بدون جایگزاری بهره برد. در شیوه نمونه گیری با جای گذاری، هر نمونه پس از اینکه انتخاب شد مجددا به جامعه بازگردانده می شود و این شانس را خواهد داشت که حتی در انتخاب های بعدی نیز برای نمونه انتخاب شود
نمونه گيري تصادفي سیستماتیک Systematic Random Sampling
روش نمونه گیری منظم یا نمونه گیری سیستماتیک
روش نمونه گیری سیستماتیک Systematic Random Sampling روش تغییر شکل یافته ی نمونه گیری تصادفی ساده است. در این روش عناصر نمونه از فهرست افراد یا جامعه اماری که به همین منظور آماده شده است انتخاب می شوند. برای مثال فرض کنید از جامعه ای که 2 هزار عضو دارد می خواهیم 100 عضو را انتخاب کنیم. نمونه مورد نظر را می توان از روی فهرست،20 نفر، انتخاب کرد (100÷2000=20). نقطه شروع نمونه گیری عبارت است از هر عضوی که دارای شماره مساوی یا کوچک تر از 20 است؛ این نقطه به صورت تصادفی انتخاب می شود.
این روش برای آن دسته از جوامع آماری که کد از پیش تعیین شده و مرتبی دارند (همانند شماره کارمندی، دانشجویی و پلاک منازل) کاربرد فراوان دارد. با مشخص شدن اولین عضو نمونه، سایر اعضای نمونه در این روش معین می شوند. این خاصیت از یک سو یکی از محاسن روش تلقی و از سوی دیگر موجب از دست رفتن شانس انتخاب برای سایر اعضای جامعه می شود. به عبارت دیگر، خاصیت تصادفی بودن عناصر نمونه برخلاف روش نمونه گیری تصادفی ساده با علامت سوال همراه است.
دقت نمونه گیری تصادفی سیستماتیک زمانی که ترتیب واحدهای جامعه به صورت تصادف باشد، دقیقا معادل با نمونه گیری تصادفی ساده است. نمونه گیری سیستماتیک و منظم زمانی که ترتیب واحدهای جامعه بر اساس صفتی مرتبط با مورد تخمین باشد، بهتر و دقیق تر از نمونه گیری تصادفی ساده و حتی بهتر از نمونه گیری طبقه ای و یا گروهی است. همچنین اجرای نمونه گیری سیستماتیک ساده و کم هزینه است.
مثال نمونه گیری سیستماتیک:
به عنوان مثال برای 12 جامعه زیر، اگر بخواهیم 4 نمونه انتخاب کنیم باید فاصله نمونه گیری برابر 3 باشد.
نمونه گيري تصادفي گروهی Stratified Random Sampling
روش نمونه گیری طبقه ای یا نمونه گیری گروهی
برای بیشتر کردن شباهت نمونه و جامعه و افزایش دقت نمونه برداری برای برآورد پارامترهای جامعه و دخالت دادن ویژگی های جامعه در نمونه، در روش نمونه گیری طبقه ای Stratified Random Sampling (نمونه گیری گروهی) جامعه به گروه های متجانس تقسیم و هر گروه از افرادی تشکیل می شود که ویژگی هایی مشابه دارند. پس از تقسیم جامعه به گروههای متجانس، تعداد نمونه نسبت به هر گروه مشخص و سپس با استفاده از روش نمونه گیری تصادفی ساده یا منظم، تعداد عناصر مورد نیاز از هر گروه انتخاب می شود. از روش نمونه گیری طبقه ای (نمونه گیری گروهی) هنگامی استفاده می شود که محقق اطمینان داشته باشد که اعضای جامعه مورد بررسی، از نظر یک سری ویژگی ها (صفات) با هم متفاوت باشند. در روش نمونه تصادفی ساده، به این ویژگی ها توجهی نمی شود.
مثال نمونه گیری طبقه ای یا نمونه گیری گروهی Stratified Random Sampling:
هدف از این مثال، تحقیق و بررسی وضعیت عملکرد واحد های مختلف سازمان است. در این تحقیق تعداد کارمندان در هر واحد تولید 133 نفر و واحد خدمات 59 نفر. بررسی ها نشان می دهد که باید یک نمونه 80 نفره را از کل سازمان انتخاب و تعداد نمونه ها را بر حسب هر گروه (واحد) مشخص کرد.
از آنجا که مدیریت به تاثیر واحد کاری در عملکرد اعتقاد دارد پس باید نسبت کارمندان هر واحد به کل کارمندان سازمان را در نمونه 80 تایی رعایت کرد.حاصل عملیات نمونه گیری گروهی برای تعیین عناصر نمونه هرگروه در جدول زیر آمده است.
چنان که مشخص است براساس سطر آخر جدول بالا، باید از واحد مالی 24 نفر ،اداری 30 نفر، واحد تولید 18 نفر و خدمات 8 نفر را به عنوان نمونه انتخاب کرد.
هر گاه جامعه مورد بررسی خیلی وسیع و گسترده باشد و تهیه فهرست تمامی اعضای جامعه امکان پذیر نباشد انتخاب نمونه از نظر اجرایی مشکل به نظر می رسد. برای مثال، فرض کنید میخواهیم میزان تحصیلات کارمندان یک شهر بزرگ را بررسی کنیم. انتخاب نمونه با استفاده از روشهای مذکور دشوار است و به دقت و هزینه زیاد نیاز دارد اما با استفاده از نمونه گیری خوشه ای Cluster Sampling می توان واحد نمونه گیری را «سازمان » تعریف کرد. ابتدا چند سازمان (خوشه ) را به صورت نمونه گیری تصادفی ساده یا سامان مند و سپس کارمندان مورد نیاز را از بین این سازمانها انتخاب می کنیم.
تفاوت روش نمونه گیری گروهی و نمونه گیری خوشه ای Cluster Sampling در این است که در روش گروهی تهیه فهرست اعضای جامعه (چهارچوب نمونه گیری ) امکان پذیر است ولی در خوشه ای این کار مقدور نیست. اگر جمعيت گسترده و پراكنده باشد روش مناسبي است. بايد توجه داشت كه هر چه حجم خوشه ها بیشتر باشد و شباهت افراد آن خوشه از نظر صفت متغير مورد بررسي زیاد باشد، دقت نمونه گيري خوشه اي كمتر خواهد شد.
مثال: بررسي شيوع عفونت هاي روده اي در روستاهاي استان فارس چند روستا از استان فارس انتخاب شده و شیوع عفونت در افراد آن روستاها مورد بررسی قرار میگیرد.
تفاوت بین نمونه گیری خوشه ای با نمونه گیری طبقه ای یا گروهی
الف-در نمونه گیری تصادفی طبقه ای یا گروهی از هر طبقه یا گروه تعدادی را به عنوان نمونه انتخاب می کنیم در حالی که در نمونه گیری خوشه ای Cluster sampling، نمونه از تعدادی از خوشه ها انتخاب می شود. ب- در نمونه گیری طبقه ای، دقت نمونه گیری تابع مستقیمی با همگنی (مشابهت) درون طبقات و ناهمگنی (عدم مشابهت) بین طبقات است. اما دقت نمونه گیری تصادفی خوشه ای تابع مستقیم با ناهمگنی (عدم مشابهت) درون خوشه ها و همگنی (مشابهت) بین خوشه ها است.
نمونه گيري چند مرحله ای multistage sampling
روش نمونه گیری چند مرحله ای
نمونه گیری مرحله ای multistage sampling، شکل گسترده یافته ی نمونه گیری خوشه ای است. در این روش عناصر نمونه اصلی طی چند مرحله انتخاب می شوند یعنی انتخاب نمونه از نمونه ی دیگر. مثلا می توان در مثال نمونه گیری خوشه ای، ابتدا چند سازمان را به طور تصادفی از یک شهر برگزید و سپس از بین هر سازمان چند واحد سازمانی را معین و پس از آن عناصر نمونه را از هر واحد به طور تصادفی انتخاب کرد. به طور کلی باید گفت در روش نمونه گیری مرحله ای، در هر مرحله یک شرط بر روی اعضای جامعه گذاشته می شود و به این طریق نمونه مورد نظر را انتخاب می کنند.
مثال از نمونه گیری خوشه ای چند مرحله ای
برای مثال در برآورد هوش معندی مدیران یک شرکت هلدینگ، می توان مدیران را در سه مرحله با استفاده از واحدهای نمونه گیری مختلف زیر به صورت زیر انتخاب کرد: واحد مرحله اول: هلدینگ شرکت 1 شرکت 2 …… شرکت 10 واحد مرحله دوم: واحد مدیریت واحد مدیریت 1 و 2 واحد مدیریت 3 و 4 ….. واحد مدیریت 19 و 20 واحد مرحله سوم: مدیران 1، 2، 3، . . . . 58، 59، 60 در مثال فوق ابتدا جامعه مدیران, به شرکت هایی تقسیم شده است. در این مرحله که مرحله اول نمونه گیری است، از میان شرکت های انتخاب شده، دو واحد مدیریت (واحد مرحله دوم) انتخاب شده است. در اینجا از واحد مدیریت شماره یک، مدیران 1 و 2 و از واحد مدیریت شماره دوم مدیران 3 و 4 و بالاخره از واحد مدیریت دهم، مدیران 19 و 20 به طور تصادفی انتخاب شده اند. در مجموع 60 مدیر (3*2*10 = 60) از 20 واحد مدیریت و 10 شرکت وابسته به هلدینگ انتخاب شده است. دقت نمونه گیری خوشه ای چند مرحله ای در مقایسه با نمونه گیری خوشه ای بیشتر است به این دلیل که در نمونه گیری خوشه ای چند مرحله ای واحدهای نمونه مرحله نهایی انتخابی از پراکندگی سطح جامعه انتخاب شده و تغییرات متغیر مورد مورد نظر در نمونه، می تواند معرف تغییرات در جامعه باشد. در حالی که در نمونه گیری خوشه ای چنین امری میسر نمی باشد.
هزینه تحلیل داده های آماری فصل 4 پایان نامه و مقاله با کیفیت بالا، در اسرع وقت و قیمت چند سال قبل!!
دیروز در یکی از گروه های پژوهشی که مخاطبان آن اکثراً محقق با مدرک تحصیلی دکتری و حداقل ارشد هستند چند نفر اعتراض داشتند به کار یکی از آماریست ها مبنی بر اینکه حدود 6 ماهه کار و هزینه را از ما گرفته ولی تا کنون گزارش را تحویل نداده است! از شواهد هم برمی آمد که هزینه میلیونی و چند میلیونی گرفته! این تیپ به اصطلاح آماریست ها اکثراً تبلیغات زیادی دارند و در شبکه های اجتماعی خود را متخصص معرفی می کنند و … در حالیکه در اصل کار را خودشان انجام نمی دهند و به اصطلاح برون سپاری می کنند به همین خاطر نمی توانند بعدا پاسخگو باشند.!
بر این اساس واجب دانستم که کار خود را برای یکبار دیگر معرفی کنم.
از لحاظ زمانی: پروسه کار تحلیل ما اکثر در 1 الی 2 روز نهایتاً 4 روز طول می کشد (البته اگر طرح تحقیق اشکال نداشته باشد)
قبل از شروع تحلیل ، فصل اول و سوم به صورت کاملاً رایگان و- البته در صورت رضایت دانشجو- بررسی و مشکلات احتمالی به وی گزارش می گردد تا اصلاح گردد.
هزینه انجام کار ما پایین و در حدود 700 هزار 1 میلیون تومان یعنی قیمت 2 – 3 سال قبل می باشد!
قبل از انجام کار از دانشجو و محقق هزینه ای دریافت نمی گردد، البته در صورت اتمام کار هزینه به صورت یکجا دریافت و بعد از آن گزارش تحلیل ، داده ها و خروجی نرم افزار در اختیار وی قرار می گیرد.
تحلیل با نرم افزار های مختلف انجام می گیرد تا رضایت دانشجو و استاد راهنما تأمین گردد.
در صورت درخواست دانشجو فیلم آموزشی نحوه ی دفاع و توضیحات ضروری تحلیل در اختیار وی قرار می گیرد.
سعی می شود ، اشکالی در تحلیل نباشد، اما در صورت وجود هر گونه مشکل، در اسرع وقت اصلاح می گردد و تا لحظه دفاع با دانشجو خواهیم بود.
این را به خاطر داشته باشید که هزینه تحلیل در جاهای دیگر در حدود 2 تا 3 میلیون تومان می باشد.
این آزمون نیز مانند آزمون t دو نمونه جهت مقایسه میانگین دو جامعه استفاده می شود.
در آزمون t ولچ فرض می شود واریانس دو جامعه برابر نیست.
برای نمونه به منظور بررسی معنی دار بودن تفاوت میانگین نمره نظرات پاسخ دهندگان بر اساس جنسیت در خصوص هر یک از فرضیه های پژوهش استفاده می شود. در فیلم زیر جزئیات این آزمون شرح داده شده است.
برای مشاهده لیست همه ی پرسشنامه های استاندارد لطفا همین جا روی پرسشنامه استاندارد کلیک فرمایید.
تحلیل داده های آماری برای پایان نامه و مقاله نویسی ،تحلیل داده های آماری شما با نرم افزارهای کمی و کیفی ،مناسب ترین قیمت و کیفیت عالی انجام می گیرد.
سفارش تحلیل داده های آماری برای پایان نامه و مقاله و …
تحلیل داده های آماری پایان نامه ، مقاله و … با کم ترین هزینه و بالاترین کیفیت انجام می گیرید.
تحلیل داده های کمی با نرم افزارهای SPSS- PLS – Amos و
تحلیل داده ای کیفی با نرم افزارهای کیفی Maxquda و انویو Nvivoانجام می گیرد.
قیمت تحلیل ها بسیار پایین و پایین تر از هر جای دیگر است
و بسته به نوع و میزان کار معمولا بین 700 هزار تا 1 میلیون تومان خواهد بود.
البته تحلیل هایی که کار کم تری دارند با قیمت کمتر انجام می گیرد .
قیمت تحلیل ها بسیار پایین و پایین تر از هر جای دیگر است
توجه کنیداین قیمت در جاهای دیگر بین حداقل 2 تا 3 میلیون می باشد. ما در اینجا فقط برای رعایت حال دانشجویان و شرایط سخت اقتصادی این قیمت ها را در نظر گرفته ایم. در حالی که کار ما با بالاترین کیفیت و پشتیبانی عالی انجام می گیرد.
جهت سفارش با یکی از روش های زیر تماس بگیرید:
تماس با شماره موبایل 09143444846 بگ یا ارسال اس ام اس یا پیام از طریق واتساپ و تلگرام
تخفیف ویژه برای کافی نت داران و کسانی که بالا 3 سفارش داشته باشند .
کیفیت بالا – قیمت پایین.
ما در این سایت پرسشنامه های استاندارد (دارای روایی، پایایی، روش دقیق نمره گذاری ، منبع داخل و پایان متن ) ارائه می کنیم و همچنین تحلیل آماری کمی و کیفی رابا قیمت بسیار مناسب و کیفیت عالی و تجربه بیش از 17 سال انجام می دهیم. برای تماس به ما به شماره 09143444846 در شبکه های اجتماعی پیام بفرستید. ایمیلabazizi1392@gmail.com
تمامی حقوق مادی و معنوی این سایت متعلق به لنسرسرا و محفوظ است.
این سایت دارای مجوز می باشد