بایگانی دسته: آموزش نرم افزار آماری

تحلیل آماری statistical analysis

ضرایب آماری بری بررسی تحلیل عاملی تأییدی (Confirmatory Factor Analysis – CFA) و تحلیل عاملی اکتشافی (Exploratory Factor Analysis – EFA)

ضرایب آماری بری بررسی تحلیل عاملی تأییدی (Confirmatory Factor Analysis – CFA) و تحلیل عاملی اکتشافی (Exploratory Factor Analysis – EFA)

در تحلیل عاملی، معمولاً از ضرایب و آزمون‌های مختلف برای بررسی سازوکارها و تأیید مدل استفاده می‌شود. در زیر، برخی از ضرایب و آزمون‌های مهم در تحلیل عاملی تأییدی (CFA) و تحلیل عاملی اکتشافی (EFA) ذکر شده است:

تحلیل عاملی تأییدی (CFA):

ضرایب بارگذاری (Factor Loading): این ضرایب نشان می‌دهند که هر متغیر مشاهده شده چقدر به عامل‌ها مرتبط است. ضرایب بارگذاری باید معنادار و بزرگتر از 0.3 یا 0.4 باشند.

رابطه عامل‌ها (Factor Correlations): این ضرایب نشان می‌دهند که چقدر عامل‌ها با یکدیگر مرتبط هستند. ارتباط بین عامل‌ها باید معنادار و معقول باشد.

معیارهای اندازه‌گیری (Measurement Fit Indices): این آزمون‌ها نشان می‌دهند که مدل عاملی چقدر با داده‌ها سازگار است. معیارهای مهم شامل RMSEA (Root Mean Square Error of Approximation)، CFI (Comparative Fit Index) و TLI (Tucker-Lewis Index) است.

تحلیل عاملی اکتشافی (EFA):

ضرایب بارگذاری (Factor Loading): مانند تحلیل عاملی تأییدی، در تحلیل عاملی اکتشافی نیز ضرایب بارگذاری نشان می‌دهند که هر متغیر مشاهده شده چقدر به عامل‌ها مرتبط است.

ضریب کرومباخ آلفا (Cronbach’s Alpha): این ضریب میزان همبستگی داخلی متغیرها در هر عامل را نشان می‌دهد. این ضریب باید بین 0 و 1 باشد و مقدار نزدیک به 1 نشان دهنده همبستگی بالای متغیرها در عامل است.

جنگ مرغ مینا و سنجاب بر سر سکو
جنگ مرغ مینا و سنجاب بر سر سکو

آزمون کایزر-مایر-اولکین (Kaiser-Meyer-Olkin, KMO): این آزمون نشان می‌دهد که آیا داده‌ها مناسب برای انجام تحلیل عاملی هستند یا خیر. مقدار KMO باید بین 0 و 1 باشد و مقدار نزدیک به 1 نشان دهنده مطلوب بودن داده‌ها برای تحلیل عاملی است.

این فهرست تنها مجموعه‌ای از ضرایب و آزمون‌های معمول در تحلیل عاملی است و ممکن است در هر نرم‌افزار آماری و با توجه به مدل و شرایط خاص، ضرایب و آزمون‌های دیگری نیز استموجود باشد. همچنین، توصیه می‌شود که با مطالعه منابع آماری و روش‌های تحلیل عاملی، با ضرایب و آزمون‌های مربوطه بیشتر آشنا شوید تا بهتر بتوانید نتایج تحلیل عاملی را تفسیر کنید.

تحلیل تم یا تحلیل مضمون چیست؟

مقدار T-Value و مقدار P-Value در آزمون فرض آماری چیست؟

تحلیل شبکه های اجتماعی (Social Network Analysis) — به زبان ساده و جامع

فصل 6: آموزش انویوو

تجزیه و تحلیل آماری

آموزش هوش مصنوعی پایان نامه نویسی مقاله نویسی

نرم افزار های آماری مناسب بررسی تحلیل عاملی تأییدی (Confirmatory Factor Analysis – CFA) و تحلیل عاملی اکتشافی (Exploratory Factor Analysis – EFA)

نرم افزار های آماری مناسب بررسی تحلیل عاملی تأییدی (Confirmatory Factor Analysis – CFA) و تحلیل عاملی اکتشافی (Exploratory Factor Analysis – EFA)

تحلیل داده های آماری
پایان نامه – مقاله نویسی

برای انجام تحلیل عاملی تأییدی (CFA) و تحلیل عاملی اکتشافی (EFA)، می‌توانید از نرم‌افزارهای آماری مختلف استفاده کنید. در زیر، نرم‌افزارهای محبوب برای هریک از این تحلیل‌ها ذکر شده است:

تحلیل عاملی تأییدی (CFA):

AMOS: AMOS یک نرم‌افزار معروف برای انجام تحلیل عاملی تأییدی است. این نرم‌افزار توسط شرکت IBM توسعه داده شده است و به صورت یک پلاگین برای نرم‌افزار SPSS عرضه می‌شود.

LISREL: LISREL یک نرم‌افزار قدرتمند و پرکاربرد است که برای تحلیل عاملی تأییدی و سازوکارهای معادلات ساختاری استفاده می‌شود. این نرم‌افزار قابلیت اجرای تحلیل‌های پیچیده و بررسی مدل‌های پیش‌فرض را دارد.

Mplus: Mplus یک نرم‌افزار قدرتمند و پرکاربرد برای تحلیل عاملی تأییدی است. این نرم‌افزار میزان پیچیدگی تحلیل را مدیریت می‌کند و امکانات گسترده‌ای برای بررسی سازوکارهای معادلات ساختاری و تحلیل داده‌های پنهان را فراهم می‌کند.

تحلیل عاملی اکتشافی (EFA):

SPSS: SPSS (Statistical Package for the Social Sciences) یکی از نرم‌افزارهای آماری قدرتمند برای انجام تحلیل عاملی اکتشافی است. این نرم‌افزار به راحتی قابل استفاده است و قابلیت‌های متنوعی برای تحلیل داده‌ها و شناسایی عوامل پنهان را فراهم می‌کند.

SAS: SAS (Statistical Analysis System) یک نرم‌افزار آماری قدرتمند است که قابلیت انجام تحلیل عاملی اکتشافی را نیز دارد. این نرم‌افزار امکانات گسترده‌ای برای تحلیل داده‌ها، ایجاد نمودارها و تفسیر نتایج را فراهم می‌کند.

R: R یک زبان برنامه‌نویسی و نرم‌افزار آماری متن‌باز است که بسیار قدرتمند و گسترده است. با استفاده از پکیج‌های آماری مختلف در R مانند “psych” و “lavaan”، می‌توانید تحلیل عاملی اکتشافی را انجام دهید و نتایج را تفسیر کنید.

توجه داشته باشید که هر یک ازنرم‌افزارهای ذکر شده، قابلیت‌ها و ویژگی‌های متفاوتی دارند و بر اساس نیازها و تجربه شخصی، ممکن است ترجیح دهید از یکی از آن‌ها استفاده کنید. همچنین، لازم به ذکر است که فهمیدن و تسلط بر نحوه استفاده از هر نرم‌افزار آماری ممکن است زمان و تمرین بیشتری نیاز داشته باشد.

خدمات تخصصی پژوهش و تحلیل داده های آماری با مناسب‌ترین قیمت و کیفیت برتر!

🌟با تجربه‌ی بیش از 17 سال و ارائه‌ی بهترین خدمات

مشاوره نگارش: تحلیل داده های آماری

ارائه و طراحی پرسشنامه های استاندارد

📊تحلیل داده های آماری با نرم افزارهای کمی و کیفی

📞 تماس: 09143444846 (پیامک، ایتا، واتساپ، تلگرام)

🌐 کانال تلگرام: عضو شوید

🌐 وبلاگ 

💼کیفیت بالا، قیمت مناسب و خدماتی که به نیازهای شما پاسخ می‌دهند!

💼با ما همراه باشید و پروژه‌ی خود را به یک تجربه‌ی موفق تبدیل کنید.

 

 

تحلیل آماری statistical analysis

تفاوت تحلیل عاملی تأییدی (Confirmatory Factor Analysis – CFA) و تحلیل عاملی اکتشافی (Exploratory Factor Analysis – EFA)

تفاوت تحلیل عاملی تأییدی (Confirmatory Factor Analysis – CFA) و تحلیل عاملی اکتشافی (Exploratory Factor Analysis – EFA)

دو نوع تحلیل عاملی رایج در روش‌های تحلیل عاملی عبارتند از:

تحلیل عاملی تأییدی (Confirmatory Factor Analysis – CFA):

در تحلیل عاملی تأییدی، مدل پیش‌فرضی از ساختار عاملی تعریف می‌شود و سپس میزان مطابقت بین داده‌های مشاهده شده و مدل پیش‌فرض مورد بررسی قرار می‌گیرد.
معمولاً در این روش، فرضیه‌ها و روابط میان متغیرها از قبل تعیین شده و تحلیل بر اساس این فرضیه‌ها انجام می‌شود.
هدف اصلی تحلیل عاملی تأییدی، تأیید یا رد کردن یک مدل پیش‌فرض است و بررسی مطابقت داده‌ها با ساختار پیش‌فرض را در نظر دارد.
در این روش، از معیارهای آماری مختلفی مانند بارهای عاملی، ضرایب مسیر، و شاخص‌های مطابقت استفاده می‌شود.
تحلیل عاملی اکتشافی (Exploratory Factor Analysis – EFA):

در تحلیل عاملی اکتشافی، هدف اولیه تشکیل و تعریف ساختار عاملی از متغیرها است، بدون داشتن فرضیه‌های خاص در مورد روابط بین متغیرها.
در این روش، سعی می‌شود الگوهای پنهان و ساختار پنهان را در داده‌های مشاهده شده شناسایی کنیم.
تحلیل عاملی اکتشافی معمولاً با هدف کاهش ابعاد داده‌ها و یافتن عوامل یا مفاهیم پنهان در پس از متغیرها انجام می‌شود.
با استفاده از تحلیل عاملی اکتشافی، می‌توانیم متغیرها را در عواملی یا مفاهیم بزرگتر تجزیه و تحلیل کنیم و ساختار پنهان را بررسی کنیم.
تفاوت اصلی بین تحلیل عاملی تأییدی و اکتشافی در هدف و رویکرد آن‌ها است. تحلیل عاملی تأییدی بر روی یک مدل پیش‌فرض کار می‌کند و به تأیید یا رد کردن این مدل و مطابقت داده‌ها با آن می‌پردازد. اما تحلیل عاملی اکتشافی بدون فرضیه خاصی از قبل، سعی در شناسایی الگوها و ساختار پنهان در داده‌ها دارد و به ما کمک می‌کند تا عوامل یا مفاهیم پنهان در داده‌ها را شناسایی کنیم و ساختار پنهان را بررسی کنیم.

تحلیل داده های کیفی با نرم افزار مکس کیو دی ای (Maxqda)

نوشته

نشریات و مجلات معتبر بین المللی (ISI) در حوزه آموزش و پژوهش آموزشی

نوشته

مشاوره نگارش پروپوزال، پایان نامه، مقاله و تحلیل آماری

نوشته

تفاوت پژوهش کیفی و کمّی

نوشته

تحلیل آماری چیست؟

خدمات تخصصی پژوهش و تحلیل داده های آماری با مناسب‌ترین قیمت و کیفیت برتر!

🌟با تجربه‌ی بیش از 17 سال و ارائه‌ی بهترین خدمات

مشاوره نگارش: تحلیل داده های آماری

ارائه و طراحی پرسشنامه های استاندارد

📊تحلیل داده های آماری با نرم افزارهای کمی و کیفی

📞 تماس: 09143444846 (پیامک، ایتا، واتساپ، تلگرام)

🌐 کانال تلگرام: عضو شوید

🌐 وبلاگ 

💼کیفیت بالا، قیمت مناسب و خدماتی که به نیازهای شما پاسخ می‌دهند!

💼با ما همراه باشید و پروژه‌ی خود را به یک تجربه‌ی موفق تبدیل کنید.

 

 

کامل ترین پکیج آموزش کاربردی نرم افزار انویو Nvivo (فصل هفتم)

کامل ترین پکیج آموزش کاربردی نرم افزار انویو Nvivo (فصل هفتم)

کامل ترین پکیج آموزش کاربردی نرم افزار انویو Nvivo (فصل هفتم)

فصل 7 : بصری‌سازی (Visualizations)

شامل عناوین زیر می باشد:{7-1- ساخت و مدیریت نمودار ها (Charts):7-۲-  ساخت و مدیریت نقشه ( Maps):۲-1- 7-  ساخت و مدیریت نقشه ذهنی (mind map):۲-۲- 7- ساخت و مدیریت نقشه پروژه ( Project map):۲-3- 7-  ساخت و مدیریت نقشه مفهومی ( Concept map):7-3- ساخت و مدیریت نگاره ها ( Diagrams):3-1-7-  ساخت و مدیریت نگاره تحلیل خوشه‌ای( (Cluster analysis diagram۲-3-7-  ساخت و مدیریت نگاره مقایسه‌ای ( Comparison diagram):3-3-7- ساخت و مدیریت نگاره اکتشافی ( Explore Diagram):۴-7-  ساخت و مدیریت تحلیل شیکه های اجتماعی (Social Network Analysis)1-۴-7- ساخت و مدیریت نگاره شبکه اجتماعی (Sociogram Network)  و نگاره مورد محوری اجتماعی (Egocentric sociogram) }

جهت دریافت کل پکیج اینجا کلیک کنید.

کامل ترین پکیج آموزش کاربردی نرم افزار انویو Nvivo (فصل ششم)

کامل ترین پکیج آموزش کاربردی نرم افزار انویو Nvivo (فصل ششم)

فصل6:گزارش‌گیری

این بخش شامل این عناوین می باشد: 6-1- خروجی گرفتن و گزارش‌گیری )

جهت دریافت کل پکیج اینجا کلیک کنید.

کامل ترین پکیج آموزش کاربردی نرم افزار انویو Nvivo (فصل پنجم)

کامل ترین پکیج آموزش کاربردی نرم افزار انویو Nvivo (فصل پنجم)

فصل پنجم: جستجو و بازیابی اطلاعات:

 شامل عناوین زیر می باشد{ 1- 5- جستجوی ساده و پیشرفته ۲- 5- ایجاد و مدیریت پرس‌وجوها (Queries) 1- 5-۲- ایجاد و مدیریت یک پرس‌وجو (Query) ۲- 5-۲- مدیریت یک پرس‌وجوی متنی (Query) و فراوانی کلمات 3- 5-۲- مدیریت پرس‌وجوی کدها (Coding) و کیس ها (Cases) ۴- 5-۲- مدیریت پرس‌وجوی ماتریسی کدها (Matrix Coding)5- 5-۲- مدیریت پرس‌وجوی جدول متقاطع (Crosstab)6- 5-۲- مدیریت پرس‌وجوی ترکیبی (Compound)7- 5-۲- مقایسه کدها و محاسبه ضریب کاپای کوهن}

جهت دریافت کل پکیج اینجا کلیک کنید.

کامل ترین پکیج آموزش کاربردی نرم افزار انویو Nvivo (فصل سوم)

کامل ترین پکیج آموزش کاربردی نرم افزار انویو Nvivo (فصل سوم)

کامل ترین پکیج آموزش کاربردی نرم افزار انویو Nvivo (فصل سوم)

فصل سوم : ایجاد و مدیریت کد ها

شامل عناوین زیر می باشد: {کدگذاری داده ها3-1- انواع کدگذاری در تحقیق کیفی 3-۲- نحوه کدگذاری یک فایل متنی در نرم‌افزار nvivo 123-3- نحوه کدگذاری داده های صوتی و ویدئویی3-۴- نحوه کدگذاری عکس ها و فایل PDF و فایل های صفحه گسترده (SPSs. اکسل و…)3-5- ویرایش کد ها (مرتب‌کردن ، ادغام، حذف و تغییر نام)6- 3- انواع کدگذاری و ایجاد سلسله‌مراتب بین کد ها }

جهت دریافت کل پکیج اینجا کلیک کنید.

کامل ترین پکیج آموزش کاربردی نرم افزار انویو Nvivo (فصل دوم)

کامل ترین پکیج آموزش کاربردی نرم افزار انویو Nvivo (فصل دوم)

کامل ترین پکیج آموزش کاربردی نرم افزار انویو Nvivo (فصل دوم)

فصل2 ایجاد پروژه و واردکردن داده ها

این بخش شامل این عناوین می باشد:  2-1- واردکردن داده های متنی:   روش های حل مشکل متن فارسی در انویوو –   2-2 – فراخوانی فایل های (پی‌دی‌اف (PDF) و عکس) –  2-3- ایجاد و فراخوانی فایل های (صوت و ویدئو):   پیاده‌سازی فایل متنی ویدئو – 2-4- فراخوانی داده های صفحه از گسترده ها (مانند Excel, SPSS, Access)  2-5- فراخوانی داده ها از سایت ها و شبکه های اجتماعی  – 2-6- فراخوانی داده های خارجی (Externals) }

جهت دریافت کل پکیج اینجا کلیک کنید.

کامل ترین پکیج آموزش انویو Nvivo

کامل ترین پکیج آموزش کاربردی نرم افزار انویو Nvivo (فصل اول)

کامل ترین پکیج آموزش کاربردی نرم افزار انویو Nvivo (فصل اول)

در زیر می توانید فصل اول کامل ترین پکیج آموزش کاربردی نرم افزار انویو Nvivo را مشاهده کنید.

این فصل شامل بخش های زیر می باشد:

فصل 1: آشنایی کلی با نرم‌افزار NVIVO

1-1- تهیه ، نصب و اجرای نرم‌افزار

2-1- آشنایی با محیط کاری نرم‌افزار:

1- 3 – آشنایی با پنجره های تخصصی نرم‌افزار

جهت دریافت کل پکیج اینجا کلیک کنید.

دانلود نرم افزار NVivo12

دانلود کی جن

در زیر می توانید جزئیات عناوین این فصل را مشاهده کنید:

نوان فصل ها و زیر بخش هازمان
فصل 1: آشنایی کلی با نرم‌افزار NVIVOدقیقهثانیه
1-1- تهیه ، نصب و اجرای نرم‌افزار643
1-2- آشنایی با محیط کاری نرم‌افزار648
 معرفی منوهای اصلی  
خانه (file):  
فراخوانی (Import):  
ایجاد(Create):  
پیمایش (Explore):  
اشتراک‌گذاری (Share):  
1-3- آشنایی با پنجره های تخصصی نرم‌افزار22 
 نمای هدایت گر (Navigation view):  
دسترسی سریع (Quick Access):  
دیتا (Data):  
کدها (codes):  
روابط (Relationships):  
نمونه‌ها (Cases):  
‌نوتز (Notes):  
جستجو (Search)  
نقشه (Maps)  
خروجی (Outputs)  
 نمای فهرست (List view):  
نمای جزئیات ((Detail view  
 سفارشی کردن و تنظیمات نرم‌افزار:  
تحلیل آماری - پژوهش - کیفی - کمی - کامپیوتر

روش‌های تجزیه و تحلیل داده‌های آماری

روش‌های تجزیه و تحلیل داده‌های آماری

تحلیل داده های آماری
تحلیل های کمی با نرم افزار های : SPSS – Amos – Pls تحلیل های کیفی با نرم افزار های : Maxqda – NVivo

با توسعه فناوری و افزایش دانش، ابزارهای نوینی برای جمع‌آوری، توصیف، تحلیل، انتقال و ارائه اطلاعات توسط دانش‌پژوهان تولید شده‌اند.

به عبارت دیگر، روش‌های تحقیق نیز در حال تکامل و توسعه هستند. بنابراین، آگاهی یافتن از روش‌های تحقیق و انجام تحلیل‌های آماری ضروری است برای محققان، استادان و دانشجویان.

پژوهشگر برای پاسخگویی به مسئله تدوین شده و یا تصمیم‌گیری در مورد رد یا تایید فرضیه یا فرضیاتی که برای تحقیق در نظر گرفته است، از روش‌های مختلف تجزیه و تحلیل استفاده می‌کند. همان‌طور که می‌دانید، هر مسئله نیازمند شیوه مطالعه و تحقیق خود را دارد.

بخش عمده‌ای از فعالیت‌های علمی دانشجویان در دوره‌های تحصیلات تکمیلی، کارشناسی ارشد و دکتری، به انجام تحقیقات علمی و ارائه آن‌ها به صورت گزارش، سمینار، پایان‌نامه و مقاله مربوط می‌شود. در این مطلب به طور خلاصه به بررسی و شرح بخشی از فرآیند تحقیق در زمینه تحلیل داده‌ها و روش‌های آماری می‌پردازیم. همچنین با روش‌های انجام تجزیه و تحلیل آماری آشنا خواهید شد. از آنجا که بیشتر پژوهش‌های انجام شده در دانشگاه‌ها جنبه کمی دارند، بنابراین یادگیری روش‌های آماری، به ویژه آمار استنباطی، توصیه می‌شود. بدیهی است که برای این کار لازم است که دانشجویان و علاقمندان به یادگیری، نحوه استفاده از نرم‌افزارهای آماری و به ویژه انجام تحلیل آماری با SPSS اقدام کنند. برای یادگیری کار با این نرم‌افزار، لطفاً مقاله آموزش تحلیل آماری با SPSS را مطالعه فرمایید. در پایان این نوشتار، به معرفی آزمون‌های آماری، آزمون‌های پارامتریک و آزمون‌های ناپارامتریک خواهیم پرداخت.

آمار توصیفی: آمار توصیفی به توضیح و تحلیل داده‌ها پرداخته و می‌تواند به ترتیب ارقامی بدون معنی که از آمار استفاده می‌شود، اطلاعات را معنادار کند تا اهداف پژوهشی و تحقیقات برآورده شوند. این به معنای اساسی هر مطالعه و پژوهش است که تمامی فعالیت‌های تحقیقی را تا رسیدن به یک نتیجه، کنترل و هدایت می‌کند. نحوه‌های مختلف تجزیه و تحلیل برای دست‌یابی به پاسخگویی به مسئله تدوین شده و یا تصمیم‌گیری در مورد رد یا تایید فرضیه یا فرضیاتی که برای تحقیق در نظر گرفته شده است، استفاده می‌شود. به عبارت دیگر، هر مسئله نیازمند شیوه مطالعه و تحقیق خود است.

عناصر اساسی در تجزیه و تحلیل داده‌ها:

  1. داده‌های جمع‌آوری شده باید با دقت جمع‌آوری و ثبت شوند.
  2. داده‌های نقدی که توسط آمار معنادار می‌شوند، باید تجزیه و تحلیل شوند. (بازبینی داده‌های جمع‌آوری شده)
  3. باید اطمینان حاصل شود که داده‌های جمع‌آوری شده به صحت و کیفیت مطلوب رسیده‌اند.
  4. داده‌های جمع‌آوری شده را در قالب و فرمت یکنواخت ذخیره کنید.
  5. در صورت وجود سوالات بدون پاسخ، باید آنها تکمیل شوند.
  6. اگر پاسخ‌های سوالات با یکدیگر سازگار نیستند، علت این موضوع باید بررسی شود و پرسش‌نامه اصلاح شود.
  7. پس از در دست داشتن داده‌های صحیح و با کیفیت، اقدام به استفاده از آمار و انجام تجزیه و تحلیل خواهیم نمود.

مراحل کنگره داده‌ها: الف) مراحل کردن و تنظیم داده‌ها ب) کدگذاری داده‌ها ج) سازماندهی داده‌ها مراحل کردن و تنظیم داده‌ها: برای تحلیل داده‌ها، داده‌های جمع‌آوری شده را می‌بایست انجام کدینگ و تنظیم دهیم، به شکلی که داده‌های نقدی را مشخص و مرتب کنیم. روش‌های تحلیل آماری در برابر داده‌های نقدی انجام می‌شود. روش‌های تحلیل آماری را می‌توان به دو شاخه توصیفی و استنباطی تقسیم کرد.

آمار توصیفی: آمار توصیفی به توضیح و تحلیل داده‌ها پرداخته و می‌تواند به ترتیب ارقامی بدون معنی که از آمار استفاده می‌شود، اطلاعات را معنادار کند تا اهداف پژوهشی و تحقیقات برآورده شوند. این به معنای اساسی هر مطالعه و پژوهش است که تمامی فعالیت‌های تحقیقی را تا رسیدن به یک نتیجه، کنترل و هدایت می‌کند. نحوه‌های مختلف تجزیه و تحلیل برای دست‌یابی به پاسخگویی به مسئله تدوین شده و یا تصمیم‌گیری در مورد رد یا تایید فرضیه یا فرضیاتی که برای تحقیق در نظر گرفته شده است، استفاده می‌شود. به عبارت دیگر، هر مسئله نیازمند شیوه مطالعه و تحقیق خود است.

شاخص‌های تمایل مرکزی: • میانگین: متوسط حسابی یک مجموعه داده‌ها می‌باشد. • نما: مقداری است که بیشترین تکرار را در مجموعه داده‌ها دارد. • میانه: عددی است که در وسط داده‌ها قرار دارد. • چارک‌ها: چارک و صدک‌ها مهم هستند، اما به طور کلی صدک‌ها در مورد مجموعه‌های بزرگ به کار می‌روند.

شاخص‌های پراکندگی: شاخص‌های پراکندگی نشان‌دهنده میزان پراکندگی یا تغییراتی که در بین داده‌های یک توزیع (نتایج تحقیق) وجود دارد، هستند. این شاخص‌ها مهم هستند زیرا نشان می‌دهند که آیا داده‌ها دارای تنوع زیادی هستند یا خیر.

مثال‌هایی از شاخص‌های پراکندگی: • واریانس: میزان انحراف اعداد از میانگین را نشان می‌دهد. واریانس بزرگتر به معنای تنوع بیشتر در داده‌ها است. • انحراف معیار: از این شاخص برای اندازه‌گیری انحراف اعداد از میانگین استفاده می‌شود. • دامنه: اختلاف بین حداکثر و حداقل داده‌ها را نشان می‌دهد. دامنه بزرگتر به معنای تنوع بیشتر است.

شاخص‌های چولگی و کشیدگی: • چولگی: میزان شیب و تنگی توزیع داده‌ها را نشان می‌دهد. چولگی مثبت نشان‌دهنده دارا بودن داده‌های بیشتر در یک طرف توزیع است و چولگی منفی نشان‌دهنده توزیع داده‌ها در طرف دیگر است. • کشیدگی (Kurtosis): اندازه‌گیری شکل و تیزی یا تخمین از فراوانی داده‌ها در دمای‌های توزیع است. کشیدگی بزرگتر نشان‌دهنده دارا بودن داده‌های زیاد در مرکز توزیع و کشیدگی کمتر نشان‌دهنده توزیع داده‌ها در دمای‌های بیرونی توزیع است.

آمار استنباطی: آمار استنباطی به تفسیر، تحلیل و برداشت نتایج بر اساس نمونه‌گیری از یک جمعیت بزرگتر می‌پردازد. این نمونه‌گیری به این دلیل انجام می‌شود که ممکن است تحلیل کل جمعیت زمان‌بر و گران‌قیمت باشد. از طریق نمونه‌گیری، اطلاعات زیادی از جمعیت به دست می‌آید و بر اساس آن نتایج برآورده می‌شود. در آمار استنباطی، از مفاهیمی مانند اطمینان‌اندازه‌گیری، تست فرضیه‌ها، اندازه‌گیری خطا و اعتبارسنجی استفاده می‌شود.

مثال‌هایی از آمار استنباطی: • اندازه‌گیری اطمینان: میزان قطعیت و اعتماد ما به نتایج به دست آمده از نمونه‌گیری. • تست فرضیه‌ها: بررسی فرضیه‌هایی که در مطالعه ارائه شده و تصمیم‌گیری در مورد رد یا تایید آنها. • اندازه‌گیری خطا: تخمین خطاهای ممکن در نتایج به دست آمده از نمونه‌گیری. • اعتبارسنجی: بررسی اعتبار و صحت نتایج و مطالعات با استفاده از روش‌های مختلف.

خواص شاخص های پراکندگی -شاخصهای پراکندگی مخصوص داده های کمی می باشد . – در شاخصهای پراکندگی همیشه عددی مثبت محاسبه می شود . -حداقل شاخصهای پراکندگی صفر می باشد و آن هنگامی است که همه داده ها برابر می باشند. برخی از مهمترین شاخص های پراکندگی عبارتند از: • دامنه تغییرات • واریانس • انحراف معیار • ضریب تغییر یا تعیین شاخص های چولگی شاخصی است که از نظر گرافیکی تقارن و یا عدم تقارن در مجموعه دیتا ها را نمایش می دهد و تقارن همیشه نسبت به میانگین است. شاخص های کشیدگی(Kurtosis) این شاخص مانند واریانس و انحراف معیار راجع به جمع شدن شکل یا پهن بودن شکل است. آمار استنباطی چیست؟ در بیشتر فعالیت های آماری جمع آوری، تنظیم و ارائه ی یافته ها و یا تعیین آماره ها کفایت نمی کند ، بلکه لازم است بر اساس این اطلاعات جمع آوری و تنظیم شده ، تجزیه و تحلیل و استنباط هایی برای تبیین و تصمیم گیری صورت گیرد .این بخش از آمار که به تحلیل ، تفسیر و تعمیم نتایج حاصل از تنظیم و محاسبه ی مقدماتی اماری تکیه دارد ، آمار استنباطی خوانده می شود .با استفاده از روش های امار استنباطی می توان مشخصات جامعه ی اماری را از روی نمونه ها استنباط کرد. ویژگی آمار تحلیلی یا استنباطیAnalytic Statistics • آمار تحلیلی به معنای تعمیم نتایج نمونه به جامعه است. • در آمار تحلیلی مفهوم ضریب اطمینان حائز اهمیت است. • ضریب اطمینان رایج در تحقیقات علوم پزشکی ۹۵% است. • بطور استثناء در موارد کم اهمیت تر از ضریب اطمینان ۹۰% و در مواردی که اهمیت زیادی دارد از ضریب اطمینان ۹۹% استفاده می شود. آمار استنباطی و آزمون فرضیه ها: بعد ‌از‌ توصیف ‌متغیرها ‌و‌پاسخ‌های ‌بدست‌ آمده‌ از‌ جامعه‌ آماری ‌در ‌این ‌بخش ‌به ‌بررسی‌ فرضیه‌ های ‌مطرح‌ شده‌ و ‌آزمون‌ آماری‌ مورد‌ استفاده‌ در پژوهش‌ پرداخته شده ‌است‌ به ‌بیان دیگر‌ ‌به‌ تحلیل یافته ‌های ‌بدست ‌آمده ‌پرداخته ‌می‌شود تا ‌از ‌نظر ‌آماری ‌نیز ‌بتوان ‌صحت ‌و سقم‌ فرضیات‌ را‌ مورد ‌بررسی ‌قرار ‌داد. برای اینکه آزمون آماری مناسب، مورد استفاده در پژوهش را به درستی انتخاب کنید لطفا مقالات انتخاب صحیح آزمون های آماری را مطالعه فرمایید. آزمون‌های آمار استنباطی به دو گروه تقسیم می‌شوند. 1. پارامتری: به تجزیه و تحلیل اطلاعات در سطح مقیاس فاصله‌ای و نسبی می‌پردازند که حداقل شاخص آماری آنها میانگین (Mean) و واریانس (Variance) است. 2. آزمون‌های ناپارامتری : به تجزیه و تحلیل اطلاعات در سطح مقیاس اسمی ‌و رتبه‌ای می‌پردازند که شاخص آماری آنها میانه (Median) و نما (Mode) است. آزمونهای پارامتریک • آزمون t تک نمونه • آزمون t وابسته • آزمون t دو نمونه مستقل • آزمون t ولچ • آزمون t هتلینگ • تحلیل واریانس (ANOVA) • تحلیل واریانس چندعاملی (MANOVA) • تحلیل کوواریانس چندعاملی (MANCOVA) آزمونهای ناپارامتریک • آزمون علامت تک نمونه • آزمون علامت زوجی • ویلکاکسون • من-ویتنی • کروسکال-والیس • فریدمن • کولموگروف-اسمیرنف • آزمون تقارن توزیع • آزمون میانه • مک نمار • آزمون Q کوکران • ضریب همبستگی اسپیرمن تحلیل‌های انجام گرفته در موسسه همیار پروژه دارای ویژگی‌های زیر می باشد: • انجام تمام تحلیل های موجود • توضیح و تفسیر کامل برون دادها • ارائه مشاوره در حین تحلیل • استفاده از نرم افزارهای متنوع • بررسی نهایی تحلیل آماری • انجام انواع مختلف پروژه های آماری و تحلیل پایان نامه ها • انجام سفارشات تجزیه و تحلیل آماری داده های آماری بدست آمده از پرسشنامه • اطلاعات حاصل از آزمایشات و تحقیقات علمی و آنالیز آماری آنها • اجرای انواع آزمونها و روشهای آماری (اعم از آزمونهای پارامتری و ناپارامتریک) • و…

معرفی بهترین نرم افزارهای تحلیل آماری پایان نامه و مقاله

روش های آماری پارامتریک و ناپارامتریک؟

انواع مدل هاي معادلات ساختاري و کاربرد آن ها

فصل 5 : آموزش انویوو: جستجو و بازیابی اطلاعات

نحوه نوشتن فصل چهارم پایان نامه و تحلیل داده ه

شاخص‌های پراکندگی مخصوص داده‌های کمی هستند و همیشه اعداد مثبت محاسبه می‌شوند. حداقل شاخص‌های پراکندگی صفر است که در صورتی اتفاق می‌افتد که همه داده‌ها برابر باشند. این شاخص‌ها از اهمیت زیادی برخوردارند و در تحلیل داده‌ها و اندازه‌گیری تغییرات مفید هستند. در ادامه به بررسی ویژگی‌های آمار استنباطی و آزمون‌های آماری پرداخته و تحلیل‌هایی که در موسسه همیار پروژه انجام می‌دهند، معرفی می‌شوند.

آمار استنباطی: آمار استنباطی به تفسیر، تحلیل و برداشت نتایج بر اساس نمونه‌گیری از یک جمعیت بزرگتر می‌پردازد. این نمونه‌گیری به این دلیل انجام می‌شود که ممکن است تحلیل کل جمعیت زمان‌بر و گران‌قیمت باشد. از طریق نمونه‌گیری، اطلاعات زیادی از جمعیت به دست می‌آید و بر اساس آن نتایج برآورده می‌شود. در آمار استنباطی، از مفاهیمی مانند اطمینان‌اندازه‌گیری، تست فرضیه‌ها، اندازه‌گیری خطا و اعتبارسنجی استفاده می‌شود.

آزمون‌های آماری: آزمون‌های آماری به دو گروه تقسیم می‌شوند: پارامتریک و ناپارامتریک.

آزمون‌های پارامتریک از تجزیه و تحلیل اطلاعات در سطح مقیاس فاصله‌ای و نسبی می‌پردازند که حداقل شاخص آماری آنها میانگین و واریانس است. برخی از آزمون‌های پارامتریک عبارتند از:

  • آزمون t تک نمونه
  • آزمون t وابسته
  • آزمون t دو نمونه مستقل
  • آزمون t ولچ
  • تحلیل واریانس (ANOVA)
  • تحلیل واریانس چندعاملی (MANOVA)
  • تحلیل کوواریانس چندعاملی (MANCOVA)

آزمون‌های ناپارامتریک به تجزیه و تحلیل اطلاعات در سطح مقیاس اسمی و رتبه‌ای می‌پردازند که شاخص آماری آنها میانه و نما است. برخی از آزمون‌های ناپارامتریک عبارتند از:

  • آزمون علامت تک نمونه
  • آزمون علامت زوجی
  • ویلکاکسون
  • من-ویتنی
  • کروسکال-والیس
  • فریدمن
  • کولموگروف-اسمیرنف
  • آزمون تقارن توزیع
  • آزمون میانه
  • مک نمار
  • آزمون Q کوکران
  • ضریب همبستگی اسپیرمن