تحلیل آماری - پژوهش - کیفی - کمی - کامپیوتر

روش‌های تجزیه و تحلیل داده‌های آماری

روش‌های تجزیه و تحلیل داده‌های آماری

تحلیل داده های آماری
تحلیل های کمی با نرم افزار های : SPSS – Amos – Pls تحلیل های کیفی با نرم افزار های : Maxqda – NVivo

با توسعه فناوری و افزایش دانش، ابزارهای نوینی برای جمع‌آوری، توصیف، تحلیل، انتقال و ارائه اطلاعات توسط دانش‌پژوهان تولید شده‌اند.

به عبارت دیگر، روش‌های تحقیق نیز در حال تکامل و توسعه هستند. بنابراین، آگاهی یافتن از روش‌های تحقیق و انجام تحلیل‌های آماری ضروری است برای محققان، استادان و دانشجویان.

پژوهشگر برای پاسخگویی به مسئله تدوین شده و یا تصمیم‌گیری در مورد رد یا تایید فرضیه یا فرضیاتی که برای تحقیق در نظر گرفته است، از روش‌های مختلف تجزیه و تحلیل استفاده می‌کند. همان‌طور که می‌دانید، هر مسئله نیازمند شیوه مطالعه و تحقیق خود را دارد.

بخش عمده‌ای از فعالیت‌های علمی دانشجویان در دوره‌های تحصیلات تکمیلی، کارشناسی ارشد و دکتری، به انجام تحقیقات علمی و ارائه آن‌ها به صورت گزارش، سمینار، پایان‌نامه و مقاله مربوط می‌شود. در این مطلب به طور خلاصه به بررسی و شرح بخشی از فرآیند تحقیق در زمینه تحلیل داده‌ها و روش‌های آماری می‌پردازیم. همچنین با روش‌های انجام تجزیه و تحلیل آماری آشنا خواهید شد. از آنجا که بیشتر پژوهش‌های انجام شده در دانشگاه‌ها جنبه کمی دارند، بنابراین یادگیری روش‌های آماری، به ویژه آمار استنباطی، توصیه می‌شود. بدیهی است که برای این کار لازم است که دانشجویان و علاقمندان به یادگیری، نحوه استفاده از نرم‌افزارهای آماری و به ویژه انجام تحلیل آماری با SPSS اقدام کنند. برای یادگیری کار با این نرم‌افزار، لطفاً مقاله آموزش تحلیل آماری با SPSS را مطالعه فرمایید. در پایان این نوشتار، به معرفی آزمون‌های آماری، آزمون‌های پارامتریک و آزمون‌های ناپارامتریک خواهیم پرداخت.

آمار توصیفی: آمار توصیفی به توضیح و تحلیل داده‌ها پرداخته و می‌تواند به ترتیب ارقامی بدون معنی که از آمار استفاده می‌شود، اطلاعات را معنادار کند تا اهداف پژوهشی و تحقیقات برآورده شوند. این به معنای اساسی هر مطالعه و پژوهش است که تمامی فعالیت‌های تحقیقی را تا رسیدن به یک نتیجه، کنترل و هدایت می‌کند. نحوه‌های مختلف تجزیه و تحلیل برای دست‌یابی به پاسخگویی به مسئله تدوین شده و یا تصمیم‌گیری در مورد رد یا تایید فرضیه یا فرضیاتی که برای تحقیق در نظر گرفته شده است، استفاده می‌شود. به عبارت دیگر، هر مسئله نیازمند شیوه مطالعه و تحقیق خود است.

عناصر اساسی در تجزیه و تحلیل داده‌ها:

  1. داده‌های جمع‌آوری شده باید با دقت جمع‌آوری و ثبت شوند.
  2. داده‌های نقدی که توسط آمار معنادار می‌شوند، باید تجزیه و تحلیل شوند. (بازبینی داده‌های جمع‌آوری شده)
  3. باید اطمینان حاصل شود که داده‌های جمع‌آوری شده به صحت و کیفیت مطلوب رسیده‌اند.
  4. داده‌های جمع‌آوری شده را در قالب و فرمت یکنواخت ذخیره کنید.
  5. در صورت وجود سوالات بدون پاسخ، باید آنها تکمیل شوند.
  6. اگر پاسخ‌های سوالات با یکدیگر سازگار نیستند، علت این موضوع باید بررسی شود و پرسش‌نامه اصلاح شود.
  7. پس از در دست داشتن داده‌های صحیح و با کیفیت، اقدام به استفاده از آمار و انجام تجزیه و تحلیل خواهیم نمود.

مراحل کنگره داده‌ها: الف) مراحل کردن و تنظیم داده‌ها ب) کدگذاری داده‌ها ج) سازماندهی داده‌ها مراحل کردن و تنظیم داده‌ها: برای تحلیل داده‌ها، داده‌های جمع‌آوری شده را می‌بایست انجام کدینگ و تنظیم دهیم، به شکلی که داده‌های نقدی را مشخص و مرتب کنیم. روش‌های تحلیل آماری در برابر داده‌های نقدی انجام می‌شود. روش‌های تحلیل آماری را می‌توان به دو شاخه توصیفی و استنباطی تقسیم کرد.

آمار توصیفی: آمار توصیفی به توضیح و تحلیل داده‌ها پرداخته و می‌تواند به ترتیب ارقامی بدون معنی که از آمار استفاده می‌شود، اطلاعات را معنادار کند تا اهداف پژوهشی و تحقیقات برآورده شوند. این به معنای اساسی هر مطالعه و پژوهش است که تمامی فعالیت‌های تحقیقی را تا رسیدن به یک نتیجه، کنترل و هدایت می‌کند. نحوه‌های مختلف تجزیه و تحلیل برای دست‌یابی به پاسخگویی به مسئله تدوین شده و یا تصمیم‌گیری در مورد رد یا تایید فرضیه یا فرضیاتی که برای تحقیق در نظر گرفته شده است، استفاده می‌شود. به عبارت دیگر، هر مسئله نیازمند شیوه مطالعه و تحقیق خود است.

شاخص‌های تمایل مرکزی: • میانگین: متوسط حسابی یک مجموعه داده‌ها می‌باشد. • نما: مقداری است که بیشترین تکرار را در مجموعه داده‌ها دارد. • میانه: عددی است که در وسط داده‌ها قرار دارد. • چارک‌ها: چارک و صدک‌ها مهم هستند، اما به طور کلی صدک‌ها در مورد مجموعه‌های بزرگ به کار می‌روند.

شاخص‌های پراکندگی: شاخص‌های پراکندگی نشان‌دهنده میزان پراکندگی یا تغییراتی که در بین داده‌های یک توزیع (نتایج تحقیق) وجود دارد، هستند. این شاخص‌ها مهم هستند زیرا نشان می‌دهند که آیا داده‌ها دارای تنوع زیادی هستند یا خیر.

مثال‌هایی از شاخص‌های پراکندگی: • واریانس: میزان انحراف اعداد از میانگین را نشان می‌دهد. واریانس بزرگتر به معنای تنوع بیشتر در داده‌ها است. • انحراف معیار: از این شاخص برای اندازه‌گیری انحراف اعداد از میانگین استفاده می‌شود. • دامنه: اختلاف بین حداکثر و حداقل داده‌ها را نشان می‌دهد. دامنه بزرگتر به معنای تنوع بیشتر است.

شاخص‌های چولگی و کشیدگی: • چولگی: میزان شیب و تنگی توزیع داده‌ها را نشان می‌دهد. چولگی مثبت نشان‌دهنده دارا بودن داده‌های بیشتر در یک طرف توزیع است و چولگی منفی نشان‌دهنده توزیع داده‌ها در طرف دیگر است. • کشیدگی (Kurtosis): اندازه‌گیری شکل و تیزی یا تخمین از فراوانی داده‌ها در دمای‌های توزیع است. کشیدگی بزرگتر نشان‌دهنده دارا بودن داده‌های زیاد در مرکز توزیع و کشیدگی کمتر نشان‌دهنده توزیع داده‌ها در دمای‌های بیرونی توزیع است.

آمار استنباطی: آمار استنباطی به تفسیر، تحلیل و برداشت نتایج بر اساس نمونه‌گیری از یک جمعیت بزرگتر می‌پردازد. این نمونه‌گیری به این دلیل انجام می‌شود که ممکن است تحلیل کل جمعیت زمان‌بر و گران‌قیمت باشد. از طریق نمونه‌گیری، اطلاعات زیادی از جمعیت به دست می‌آید و بر اساس آن نتایج برآورده می‌شود. در آمار استنباطی، از مفاهیمی مانند اطمینان‌اندازه‌گیری، تست فرضیه‌ها، اندازه‌گیری خطا و اعتبارسنجی استفاده می‌شود.

مثال‌هایی از آمار استنباطی: • اندازه‌گیری اطمینان: میزان قطعیت و اعتماد ما به نتایج به دست آمده از نمونه‌گیری. • تست فرضیه‌ها: بررسی فرضیه‌هایی که در مطالعه ارائه شده و تصمیم‌گیری در مورد رد یا تایید آنها. • اندازه‌گیری خطا: تخمین خطاهای ممکن در نتایج به دست آمده از نمونه‌گیری. • اعتبارسنجی: بررسی اعتبار و صحت نتایج و مطالعات با استفاده از روش‌های مختلف.

خواص شاخص های پراکندگی -شاخصهای پراکندگی مخصوص داده های کمی می باشد . – در شاخصهای پراکندگی همیشه عددی مثبت محاسبه می شود . -حداقل شاخصهای پراکندگی صفر می باشد و آن هنگامی است که همه داده ها برابر می باشند. برخی از مهمترین شاخص های پراکندگی عبارتند از: • دامنه تغییرات • واریانس • انحراف معیار • ضریب تغییر یا تعیین شاخص های چولگی شاخصی است که از نظر گرافیکی تقارن و یا عدم تقارن در مجموعه دیتا ها را نمایش می دهد و تقارن همیشه نسبت به میانگین است. شاخص های کشیدگی(Kurtosis) این شاخص مانند واریانس و انحراف معیار راجع به جمع شدن شکل یا پهن بودن شکل است. آمار استنباطی چیست؟ در بیشتر فعالیت های آماری جمع آوری، تنظیم و ارائه ی یافته ها و یا تعیین آماره ها کفایت نمی کند ، بلکه لازم است بر اساس این اطلاعات جمع آوری و تنظیم شده ، تجزیه و تحلیل و استنباط هایی برای تبیین و تصمیم گیری صورت گیرد .این بخش از آمار که به تحلیل ، تفسیر و تعمیم نتایج حاصل از تنظیم و محاسبه ی مقدماتی اماری تکیه دارد ، آمار استنباطی خوانده می شود .با استفاده از روش های امار استنباطی می توان مشخصات جامعه ی اماری را از روی نمونه ها استنباط کرد. ویژگی آمار تحلیلی یا استنباطیAnalytic Statistics • آمار تحلیلی به معنای تعمیم نتایج نمونه به جامعه است. • در آمار تحلیلی مفهوم ضریب اطمینان حائز اهمیت است. • ضریب اطمینان رایج در تحقیقات علوم پزشکی ۹۵% است. • بطور استثناء در موارد کم اهمیت تر از ضریب اطمینان ۹۰% و در مواردی که اهمیت زیادی دارد از ضریب اطمینان ۹۹% استفاده می شود. آمار استنباطی و آزمون فرضیه ها: بعد ‌از‌ توصیف ‌متغیرها ‌و‌پاسخ‌های ‌بدست‌ آمده‌ از‌ جامعه‌ آماری ‌در ‌این ‌بخش ‌به ‌بررسی‌ فرضیه‌ های ‌مطرح‌ شده‌ و ‌آزمون‌ آماری‌ مورد‌ استفاده‌ در پژوهش‌ پرداخته شده ‌است‌ به ‌بیان دیگر‌ ‌به‌ تحلیل یافته ‌های ‌بدست ‌آمده ‌پرداخته ‌می‌شود تا ‌از ‌نظر ‌آماری ‌نیز ‌بتوان ‌صحت ‌و سقم‌ فرضیات‌ را‌ مورد ‌بررسی ‌قرار ‌داد. برای اینکه آزمون آماری مناسب، مورد استفاده در پژوهش را به درستی انتخاب کنید لطفا مقالات انتخاب صحیح آزمون های آماری را مطالعه فرمایید. آزمون‌های آمار استنباطی به دو گروه تقسیم می‌شوند. 1. پارامتری: به تجزیه و تحلیل اطلاعات در سطح مقیاس فاصله‌ای و نسبی می‌پردازند که حداقل شاخص آماری آنها میانگین (Mean) و واریانس (Variance) است. 2. آزمون‌های ناپارامتری : به تجزیه و تحلیل اطلاعات در سطح مقیاس اسمی ‌و رتبه‌ای می‌پردازند که شاخص آماری آنها میانه (Median) و نما (Mode) است. آزمونهای پارامتریک • آزمون t تک نمونه • آزمون t وابسته • آزمون t دو نمونه مستقل • آزمون t ولچ • آزمون t هتلینگ • تحلیل واریانس (ANOVA) • تحلیل واریانس چندعاملی (MANOVA) • تحلیل کوواریانس چندعاملی (MANCOVA) آزمونهای ناپارامتریک • آزمون علامت تک نمونه • آزمون علامت زوجی • ویلکاکسون • من-ویتنی • کروسکال-والیس • فریدمن • کولموگروف-اسمیرنف • آزمون تقارن توزیع • آزمون میانه • مک نمار • آزمون Q کوکران • ضریب همبستگی اسپیرمن تحلیل‌های انجام گرفته در موسسه همیار پروژه دارای ویژگی‌های زیر می باشد: • انجام تمام تحلیل های موجود • توضیح و تفسیر کامل برون دادها • ارائه مشاوره در حین تحلیل • استفاده از نرم افزارهای متنوع • بررسی نهایی تحلیل آماری • انجام انواع مختلف پروژه های آماری و تحلیل پایان نامه ها • انجام سفارشات تجزیه و تحلیل آماری داده های آماری بدست آمده از پرسشنامه • اطلاعات حاصل از آزمایشات و تحقیقات علمی و آنالیز آماری آنها • اجرای انواع آزمونها و روشهای آماری (اعم از آزمونهای پارامتری و ناپارامتریک) • و…

معرفی بهترین نرم افزارهای تحلیل آماری پایان نامه و مقاله

روش های آماری پارامتریک و ناپارامتریک؟

انواع مدل هاي معادلات ساختاري و کاربرد آن ها

فصل 5 : آموزش انویوو: جستجو و بازیابی اطلاعات

نحوه نوشتن فصل چهارم پایان نامه و تحلیل داده ه

شاخص‌های پراکندگی مخصوص داده‌های کمی هستند و همیشه اعداد مثبت محاسبه می‌شوند. حداقل شاخص‌های پراکندگی صفر است که در صورتی اتفاق می‌افتد که همه داده‌ها برابر باشند. این شاخص‌ها از اهمیت زیادی برخوردارند و در تحلیل داده‌ها و اندازه‌گیری تغییرات مفید هستند. در ادامه به بررسی ویژگی‌های آمار استنباطی و آزمون‌های آماری پرداخته و تحلیل‌هایی که در موسسه همیار پروژه انجام می‌دهند، معرفی می‌شوند.

آمار استنباطی: آمار استنباطی به تفسیر، تحلیل و برداشت نتایج بر اساس نمونه‌گیری از یک جمعیت بزرگتر می‌پردازد. این نمونه‌گیری به این دلیل انجام می‌شود که ممکن است تحلیل کل جمعیت زمان‌بر و گران‌قیمت باشد. از طریق نمونه‌گیری، اطلاعات زیادی از جمعیت به دست می‌آید و بر اساس آن نتایج برآورده می‌شود. در آمار استنباطی، از مفاهیمی مانند اطمینان‌اندازه‌گیری، تست فرضیه‌ها، اندازه‌گیری خطا و اعتبارسنجی استفاده می‌شود.

آزمون‌های آماری: آزمون‌های آماری به دو گروه تقسیم می‌شوند: پارامتریک و ناپارامتریک.

آزمون‌های پارامتریک از تجزیه و تحلیل اطلاعات در سطح مقیاس فاصله‌ای و نسبی می‌پردازند که حداقل شاخص آماری آنها میانگین و واریانس است. برخی از آزمون‌های پارامتریک عبارتند از:

  • آزمون t تک نمونه
  • آزمون t وابسته
  • آزمون t دو نمونه مستقل
  • آزمون t ولچ
  • تحلیل واریانس (ANOVA)
  • تحلیل واریانس چندعاملی (MANOVA)
  • تحلیل کوواریانس چندعاملی (MANCOVA)

آزمون‌های ناپارامتریک به تجزیه و تحلیل اطلاعات در سطح مقیاس اسمی و رتبه‌ای می‌پردازند که شاخص آماری آنها میانه و نما است. برخی از آزمون‌های ناپارامتریک عبارتند از:

  • آزمون علامت تک نمونه
  • آزمون علامت زوجی
  • ویلکاکسون
  • من-ویتنی
  • کروسکال-والیس
  • فریدمن
  • کولموگروف-اسمیرنف
  • آزمون تقارن توزیع
  • آزمون میانه
  • مک نمار
  • آزمون Q کوکران
  • ضریب همبستگی اسپیرمن

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *