بایگانی دسته: تعیین حجم نمونه با نرم افزار

آموزش پیشرفته sPSS

بررسی توصیفی و استنباطی نرمال بودن داده های تحقیق؟ آیا استفاده از آزمون های آماری برای بررسی نرمالیتی هر نوع داده ای مناسب است؟

در بسیاری از تکنیک های آماری، نرمال بودن توزیع داده ها یک پیش فرض است.

وقتی که داده ها از توزیع نرمال پیروی نکنند، ممکن است استفاده از این روش های آماری، منجر به نتیجه گیری اشتباه گردد.

بنابراین آزمون نرمال بودن داده ها اهمیت می یابد.

برخی از تحلیل ها و روش های آماری که پیش شرط نرمال بودن توزیع داده ها و یا باقیمانده های مدل برای آن ها وجود دارد عبارتند از:

  • آزمون های تی استودنت (تک نمونه ای و دو نمونه ای زوجی و وابسته)
  • آنالیز واریانس (ANOVA)
  • آزمون های معناداری ضرایب در رگرسیون
  • آزمون فیشر برای همگنی واریانس جوامع
  • آزمون همبستگی پیرسون

توزیع نرمال، مهم ترین توزیع آماری است هم به جهت اینکه پیش فرض بسیاری از

روش های آماری است ( در عمل پدیده های مختلفی از قانون نرمال پیروی می کنند و این توزیع با توزیع های مختلفی ارتباط پیدا می کند)

و نیز به سبب قضیه مهم حد مرکزی.

در بسیاری از موارد در صورت وجود نمونه به اندازه کافی، جهت تخمین برخی از احتمالات،

می توان از این توزیع بهره برد (به این معنا نیست که نمونه های بزرگ از توزیع نرمال پیروی می کنند بلکه با افزایش

حجم نمونه، توزیع میانگین داده ها و یا برخی آماره های دیگر تحت شرایطی به نرمال گرایش دارد).توزیع نرمال

توزیع نرمال

برای بررسی نرمال بودن داده ها از دو روش کلی می توان بهره برد

  1. روش توصیفی شامل نمودارها و بررسی شاخص های آماری
  2. روش استنباطی شامل آزمون فرض ها

روش های توصیفی در بررسی نرمال بودن داده ها:

برای بررسی نرمال بودن توزیع داده ها،

ابتدا باید این نکته را توجه داشت که داده هایی که به دنبال بررسی توزیع احتمالی آن هستیم باید کمی و با مقیاس فاصله ای یا نسبی باشند (برای آشنایی با مقیاس های آماری اینجا کلیک کنید).

بنابراین داده هایی که غیر از این باشند،

مثلاً از نوع کیفی اسمی یا کیفی ترتیبی، مثل داده های جمع آوری شده از پرسشنامه با طیف لیکرت، به هیچ وجه نمی توانند از توزیع نرمال پیروی کنند،

حتی اگر برخی از روش ها مثل رسم هیستوگرام داده ها (رسم هیستوگرام برای این داده ها اشتباه است و باید از نمودار میله ای استفاده شود)، توزیع نرمال را تایید کند.

الف) رسم هیستوگرام داده ها و مقایسه آن با منحنی چگالی توزیع نرمال

رسم هیستوگرام داده ها به همراه منحنی توزیع نرمال کمک زیادی به تشخیص نرمال بودن توزیع داده ها می کند.

معمولاً با این روش می توان نرمال نبودن توزیع داده ها و دلایل آن را مشاهده کرد.

اگر هیستوگرام داده ها به توزیع نرمال نزدیک بود آنگاه می توان به سراغ آزمون فرض رفت.

در شکل زیر هیستوگرام یک سری داده استاندارد شده، به همراه منحنی نرمال استاندارد رسم شده است.

توزیع داده ها به توزیع نرمال بسیار نزدیک است (داده ها از توزیع نرمال شبیه سازی شده است).

هیستوگرام داده ها و نمودار چگالی توزیع نرمال

نکته: برای رسم هیستوگرام داده ها، باید اول داده ها را استاندارد شده (منهای میانگین و تقسیم بر انحراف معیار)

و سپس با منحنی نرمال استاندارد مقایسه شود یا اینکه هیستوگرام داده های اصلی را با توزیع نرمال با میانگین و انحراف معیار داده ها مقایسه شود.

علاوه بر هیستوگرام، استفاده از نمودار جعبه ای نیز می تواند سودمند باشد.

ب) بررسی میزان کشیدگی و چولگی داده ها و مقایسه آن با مقدار این شاخص ها در توزیع نرمال

دو معیار کشیدگی و چولگی در داده ها در تشخیص نرمال بودن توزیع احتمالی داده ها، اهمیت زیادی دارد

و فلسفه برخی از آزمون ها نرمالیتی هم بررسی همین معیارهاست.

چولگی به میزان عدم تقارن منحنی فراوانی داده ها نسبت به منحنی فراوانی توزیع نرمال استاندارد گفته می شود. در داده های نرمال، منحنی فراوانی به شکل زنگوله مانند و متقارن است به نحوی که می توان شکل را از وسط به دو نیم تقسیم کرد. ولی اگر تمرکز داده ها در یک سمت منحنی نسبت به سمت دیگر بیشتر باشد، نمودار فراوانی داده ها چوله است. اگر تمرکز به سمت راست باشد، چوله به چپ و اگر به سمت چپ باشد، چوله به راست گویند.چولگی

چولگی

برای محاسبه میزان چولگی سه ضریب چولگی معمولاً استفاده می شود،

ضریب چولگی اول پیرسون، ضریب چولگی دوم پیرسون و ضریب گشتاوری چولگی (آمار و احتمال مقدماتی بهبودیان).

همچنین کشیدگی به میزان برجستگی منحنی فراوانی داده ها نسبت به منحنی فراوانی توزیع نرمال استاندارد گفته می شود.

معمولاً در محاسبه میزان چولگی و کشیدگی یک نمونه از فرمول های زیر استفاده می شود:

\[ b= \frac{\mu_3}{s^3}=\frac{\frac{1}{n}\sum_{i=1}^n (x_i-\bar{x})^3} {\sqrt{\frac{1}{n-1}\sum_{i=1}^n (x_i-\bar{x})^2}^3}\]
\[ \frac{.}{.} \]
\[k=\frac{\mu_4}{s^4}-3=\frac{\frac{1}{n}\sum_{i=1}^n (x_i-\bar{x})^4}{(\frac{1}{n-1}\sum_{i=1}^n (x_i-\bar{x})^2)^2}-3\]
کشیدگی

ج) رسم نمودار چندک  چندک و احتمال – احتمال

یکی دیگر از روش های بررسی نرمال بودن داده ها، نمودار چندک – چندک و احتمال – احتمال است.

ایده نمودار چندک – چندک مقایسه چندک های نمونه ای داده ها و چندک های توزیع موردنظر است. در اینجا با توزیع نرمال استاندارد مقایسه صورت می گیرد.

اگر داده ها از توزیع نرمال پیروی کنند، انتظار می رود که نمودار پراکنش چندک های نمونه ای داده ها در مقابل چندک های توزیع نرمال استاندارد در راستای یک خط راست قرار گیرند

(نیاز به استاندارد کردن داده ها نیست).

برای درک فلسفه ایده این روش فرض کنید X_1, X_2, \dots , X_n یک نمونه تصادفی از توزیع نرمال

با میانگین \mu و انحراف معیار \sigma در این صورت:

\[ Z_i = (X_i-\mu) / \sigma , i=1, 2, \dots, n \]

استاندارد شده داده ها و دارای توزیع نرمال استاندارد است.

اگر Z_{(1)}, Z_{(2)}, \dots, Z_{(n)} مرتب شده Z_i ها باشند

به نحوی که Z_{(1)} \leq Z_{(2)} \leq \dots  \leq Z_{(n)} و Z_{(i)}ها چندک i/n ام نمونه هستند.

از طرفی تبدیل استاندارد ساز داده ها، نگاشتی صعودی است بدین معنی

که اگر x<y آنگاه (x-\mu)/ \sigma<(y-\mu)/ \sigma بنابراین می توان نوشت:

\[ Z_{(i)} = (X_{(i)}-\mu) / \sigma , i=1, 2, \dots, n \]

زیرا:

\[ Z_{(1)} \leq Z_{(2)} \leq \dots \leq Z_{(n)}  \Longleftrightarrow   X_{(1)} \leq X_{(2)} \leq \dots \leq X_{(n)} \]

به عبارت دیگر چون تبدیل استاندارد ساز یک تبدیل صعودی است،

چه اول داده ها را مرتب کرده و سپس تبدیل بزنیم و چه تبدیل زده

و سپس داده های حاصل را مرتب کنیم، در هر دو صورت نتیجه یکسان خواهد بود.

اگر داده ها از توزیع نرمال پیروی کنند، انتظار داریم که Z_{(i)} با چندک i/n ام  توزیع نرمال استاندارد تقریباً برابر باشند.

یعنی Z_{(i)}  \simeq  q_{i/n}. از طرفی به جای q_{i/n} بهتر است از q_{(i-0.5)/n} یا q_{i/(n+1)} استفاده کرد.

بنابراین X_{(i)} \simeq \sigma q_{(i-0.5)/n}+\mu. که معادله یک خط راست با عرض از مبدا  \mu و شیب \sigma است.

پس اگر توزیع داده ها از توزیع نرمال پیروی کند انتظار می رود که نمودار پراکنش چندک های نمونه ای

و چندک های توزیع نرمال در راستای خطی راست باشد.

نکته: اگر نمودار چندک – چندک، نیمساز ربع اول دستگاه مختصات باشد، توزیع داده ها نرمال استاندارد است.

نکته: از این روش می توان در بررسی برازش توزیع های دیگر به داده ها نیز استفاده کرد.

کافیست به چندک های نمونه ای داده ها در مقابل چندک های توزیع موردنظر بررسی شود.

نکته: در نمودار چندک – چندک لزوماً نیاز به استاندارد سازی داده ها نیست،

طبق آنچه که گفته شد اگر چندک های نمونه ای در مقابل مقادیر مورد انتظارشان در توزیع نرمال استاندارد رسم شود،

انتظار می رود که یک خط راست تشکیل شود؛

حال اگر داده ها استاندارد شود، در صورت نرمال بودن داده ها خط مورد نظر نیمساز ربع اول است

ولی اگر استاندارد نشود، خطی با عرض از مبدأ برابر با میانگین داده ها و شیبی برابر با انحراف معیار داده ها تشکیل می شود.

در روش رسم نمودار احتمال – احتمال نیز مقادیر تابع توزیع تجربی داده ها در مقابل مقادیر مورد مورد انتظار تابع توزیع موردنظر (در اینجا توزیع نرمال) رسم می شود.

در صورتی که توزیع داده ها نرمال باشد، انتظار می رود که نمودار حاصل در امتداد یک خط راست (نیمساز ربع اول) باشد.P-P plot & Q-Q plot

P-P plot & Q-Q plot

آزمون های آماری بررسی نرمال بودن توزیع داده ها

برای بررسی نرمال بودن توزیع داده ها، آزمون های زیادی پیشنهاد شده است از جمله:

اندرسون – دارلینگ، کلوموگروف – اسمیرنوف، شاپیرو – ویلک، جارکو – برا، لیلیفورس، نیکویی برازش کای دو، دی آگوستینو و… .

استفاده از آزمون های کلوموگروف – اسمیرنوف، شاپیرو – ویلک و اندرسون – دارلینگ عمومیت بیشتری دارد.

با افزایش حجم نمونه انتظار می رود که توان آزمون ها نیز بیشتر شود ولی از بین این آزمون ها، معمولاً شاپیرو – ویلک بیشترین توان و کلوموگروف – اسمیرنوف کمترین توان را دارد.

آزمون های نرمالیتی از لحاظ فلسفه آزمون به سه دسته کلی تقسیم بندی می شوند:

آزمون هایی که تابع توزیع تجربی داده ها با تابع توزیع نرمال مقایسه می کنند

(مثل کلوموگروف – اسمیرنوف)، آزمون هایی که براساس یک رابطه رگرسیونی و یا تحلیل همبستگی

بین آماره های ترتیبی و مقادیر مورد انتظارشان شکل گرفته اند (مثل شاپیرو – ویلک)

و آزمون هایی که براساس مقایسه شرایط عمومی داده ها با توزیع نرمال مثل چولگی و کشیدگی شکل گرفته اند (مثل دی آگوستینو).

نکته: آزمون هایی که در اکثر نرم افزارهای آماری تحت عنوان آزمون کلوکوگروف – اسمیرنوف

برای بررسی توزیع نرمال آمده است در واقع شکل اصلاح شده این آزمون برای بررسی نرمال بودن توزیع داده هاست

که در برخی منابع این نوع آزمون تحت عنوان آزمون لیلیفورس یاد می شود.

آزمون لیلیفورس در بررسی نرمالیتی نسبت به آزمون کلی کلوموگروف – اسمیرنوف توان بالایی دارد

که به همین خاطر در اکثر نرم افزارهای آماری در کنار آزمون شاپیرو – ویلک گنجانده شده است.

بیشترین توان های آزمون نرمالیتی در بین چهار آزمون متداول به ترتیب متعلق

به شاپیرو – ویلک، اندرسون – دارلینگ، لیلیفورس و کلوموگروف – اسمیرنوف است.

نکته: فلسفه آزمون شاپیرو – ویلک شبیه به فلسفه نمودار چندک – چندک است.

در این آزمون یک رابطه رگرسیونی بین آماره های ترتیبی داده ها و مقادیر مورد انتظار آماره های ترتیبی توزیع نرمال

در نظر گرفته می شود و آماره آزمون، چیزی شبیه به ضریب تعیین در رگرسیون است که هر چقدر بیشتر باشد نشان دهنده نزدیکی توزیع داده ها به توزیع نرمال است و مقادیر کوچک آماره آزمون باعث

رد فرض صفر (نرمال بودن توزیع داده ها) می شود.

نکته:برای اجرای آزمون شاپیرو – ویلک تعداد نمونه حداقل ۳ و حداکثر ۵۰۰۰ باید باشد

(نقاط بحرانی این آزمون تا حجم نمونه ۵۰۰۰ محاسبه شده است).

نکته: گاهی این مطلب به چشم می خورد که گفته می شود آزمون شاپیرو – ویلک برای

نمونه های کمتر از ۵۰ بسیار مناسب است. توان این آزمون با افزایش حجم نمونه افزایش می باید

و برعکس این مطلب، در تعداد نمونه کم، این آزمون توان قابل قبولی ندارد.

نقاط بحرانی این آزمون در ابتدا برای حجم نمونه تا ۵۰ (Shapiro and Wilk; 1965) و

در مقاله ای دیگر تا حجم نمونه ۵۰۰۰ محاسبه شده است. لذا در برخی از مقالات، توان این آزمون تا حجم نمونه ۵۰ مورد ارزیابی قرار گرفته و این گمان به وجود آمده که آزمون شاپیرو – ویلک برای نمونه کمتر از ۵۰ مناسب است.

نکته: مقایسه توان آزمون ها بستگی به شرایطی مثل چولگی و کشیدگی و حجم نمونه دارد

و در شرایط مختلف ممکن است کارایی آزمون ها با هم متفاوت باشد.

عموماً آزمون های نرمالیتی برای حجم نمونه بیشتر از ۲۰۰ توان معقولی دارند

به همین خاطر توصیه می شود اگر حجم نمونه کمتر از این مقدار باشد از روش های توصیفی استفاده شود.

نکته: آزمون کلوموگروف – اسمیرنوف به نقاط پرت حساسیت زیادی ندارد

ولی در مقابل آزمون شاپیرو – ویلک به داده های پرت حساس است.

نکته: در نرم افزار SPSS دو آزمون شاپیرو – ویلک و آزمون کلوموگروف – اسمیرنوف قابل انجام است

و در نرم افزار Minitab نیز علاوه بر این دو آزمون، امکان انجام آزمون اندرسون – دارلینگ وجود دارد.

در نرم افزار R نیز در بسته stats دو آزمون کلوموگروف – اسمیرنوف

و شاپیرو – ویلک قابل انجام است

و در بسته nortest آزمون های اندرسون – دارلینگ،

لیلیفورس (حالت اصلاح شده آزمون کلوموگروف برای آزمون نرمالیتی)،

کای دو پیرسون، شاپیرو – فرانسیا و آزمون کرامر – وان–میسز قابل انجام است.

در بسته fBasics نیز امکان انجام آزمون های جارکو – برا و دی آگوستینو وجود دارد.

برگرفته از آمار ایران

برای مشاهده لیست همه ی  پرسشنامه های استاندارد لطفا همین جا روی پرسشنامه استاندارد  کلیک فرمایید.

تحلیل داده های آماری برای پایان نامه و مقاله نویسی ،تحلیل داده های آماری شما با نرم افزارهای کمی و کیفی ،مناسب ترین قیمت و کیفیت عالی انجام می گیرد.

نرم افزار های کمی: SPSS- PLS – Amos

نرم افزار کیفی: Maxquda

تعیین حجم نمونه با:Spss samplepower

روش های تماس:

Mobile :  09143444846  واتساپ – تلگرام

Telegram: @abazizi

وبلاگ ما

برای تحلیل داده های آماری با کیفیت بالا و قیمت مناسب همین جا  کلیک کن.

مقاله نویسی، پایان نامه نویسی

محاسبه گر حجم نمونه برای مدل سازی معادلات ساختاری (SEM) کوواریانس محور

محاسبه گر حجم نمونه برای مدل سازی معادلات ساختاری (SEM) کوواریانش محور

مبحث حجم نمونه و نحوه محاسبه آن یکی از مباحث کلیدی در تحقیقات است که معمولاً محققین در این خصوص سوالات بسیاری دارند و در تعیین حجم نمونه دچار اشکالی اساسی هستند، چون معمولاً برای تعیین حجم نمونه از فرمول کوکران یا جدول کرجسی و مورگان استفاده می کنند، با توجه به اینکه این فرمول ها بر اساس پارامتر نسبت طراحی شده اند در بسیاری از مورد کاربرد ندارند، لذا محققان را در دفاع از پایان نامه یا پذیرش مقاله در مجلات معتبر علمی دچار مشکل می کند.

یکی از نرم افزارهای مناسب برای تعیین حجم نمونه نرم افزار IBM SPSS Sample power است.

کتاب و فیلم آموزشی این نرم افزار توسط مدیر این سایت ساخت در دست چاپ می باشد و انشاا… به زودی چاپ خواهد شد و فیلم آموزشی آن هم در همین سایت قرار داده خواهد شد.

در این کتاب سعی شده است روش کار با این نرم افزار به صورت بسیار ساده و کاربردی، همراه با مثال های ملموسی آموزش داده شود، بطوریکه کاربر و محقق بایک بار مطالعه این کتاب، قادر خواهد بود کار با این نرم افزار را یادبگیرد.

امّا واقعیت این است که برای مدل سازی معادلات ساختاری کواریانس محور در این نرم افزار جای مناسبی وجود ندارد ، پس وقتی محقق بخواهد برای تحلیل داده های خود از نرم افزارهای مانند  ایموس، لیزرل و … استفاده کند ، برای تعین حجم نمونه باید از فرمول ها و روش های دیگری استفاده نماید. یکی از این روش ها استفاده از قاعده سر انگشتی است و روش بهتر استفاده از محاسبه گرهای  مبتنی بر فرمولهای پیشرفته است. که روش دومی مناسبتر می باشد.

در زیر یک محاسبه گر آن لاین آمده است که می توانید برای حجم نمونه در مدل سازی معادلات ساختاری کواریانس محور از آن استفاده نمایید.

برای محاسبه دقیق حجم نمونه بر اساس این محاسبه گر، اعداد را در جای خود بر اساس توضیحات زیر وارد نمایید.

  1. در قسمت Anticipated effect size که باید اندازه اثر مورد نظر برای آزمون مدل سازی معادلات ساختاری را وارد نمایید از قانون سه مقدار Chin در سال 1998 برای مقادیر R2 استفاده می کنید. سه مقدار چین شامل 0.19 و 0.33 و 0.67 است که محقق باید اندازه اثر 0.19 را جهت تشخیص آزمون برای این اندازه اثر وارد نماید.
  2. 2.       در گام دوم توان آزمون Desired statistical power level یا همان عکس خطای نوع دوم را باید وارد نمود که در مطالعات علوم انسانی و اجتماعی این مقدار بین 80 تا 90 درصد انتخاب می شود و حداقل آزمون باید توانی برابر با 80 درصد داشته باشد.
  3. در قسمت سوم تعداد متغیر های مکنون مدل پژوهش Number of latent variables اعم از برونزا و درونزا را وارد می کنیم که در مثال زیر 5 متغیر مکنون است. که هریک بر اساس گویه هایی اندازه گیری می گردند.
  4. متغیر های آشکار یا همان  گویه های پرسش نامه یعنی Number of observed variables را وارد نمایید که در اینجا 96  متغیر آشکار یا مشاهده پذیر وجود دارد(آیتم/ سوال/ گویه)
  5. در نهایت میزان خطای نوع اول را جهت دستیابی به بازه اطمینان 95 یا 99 درصد را وارد نمایید یعنی بجای Probability level مقادیر 0.05 و یا 0.01 را وارد نمایید. البته بهتر است که هر دو در دو سناریو مختلف وارد شوند سپس بر اساس نوع مسئله، توان محقق، بودجه محقق و غیره یکی از حجم نمونه های تعیین شده انتخاب گردد.  سپس آیکون Calculate زده می شود. عدد اول ظاهر شده حجم نمونه علمی شما برای تحقیق پیش رو است.

برای محاسبه حجم نمونه مدل سازی معادلات ساختاری (SEM) کوواریانش محور کلیک کنید.

برای محاسبه حجم نمونه مدل سازی معادلات ساختاری (SEM) کوواریانش محور کلیک کنید.

حجم نمونه  برای  تحلیل رگرسیون ( Logistic )درIBM SPSS Sample power

کتاب-آموزش-تصویری-نمونه-گیری-با-SPSS-Sample-Power.jpg

 دانلود کتاب آموزش تصویری نمونه گیری با SPSS Sample Power (کتابی که نیازمند هر محققی می باشد- برای خرید و دریافت مستقیم کتاب زیر دکمه زیر کلیک کنید.

حجم نمونه  برای  تحلیل رگرسیون ( Logistic )درIBM SPSS Sample power

اگر  در منوی اصلی نرم افزار تحلیل واریانس  (( Logistic) را انتخاب کنیم گزینه های زیر را به ما می دهد.

www.rava20.ir

پارامتر اصلی ممکن است  احتمال رخداد، نسبت شانس و یا ضریب بتا باشد. نسبت شانس از عمومیت بالاتری برخوردار است.

اگر می خواهید حجم نمونه تحقیقتان با نرم افزار IBM SPSS Sample power  انجام گیرد یا تمایل داشتید  آموزش این نرم افزار را ببینید و خودتان این کار را انجام دهید با ما تماس بگیرید.

تماس با ما

ما قصد داریم تحلیل داده های شما را با کم ترین هزینه و بالاترین کیفیت انجام بدهیم. قیمت تحلیل ها بسیار پایین می باشد و پایین تر از هر جای دیگر است و بسته به نوع و میزان کار بین 200 تا 300 هزار تومان خواهد بود. فعلاً تحلیل داده های آماری با نرم افزارهای SPSS- PLS – Amos و نرم افزار کیفی Maxquda انجام می گیرد. جهت سفارش تحلی فرم زیر را تکمیل یا اینکه با ما تماس حاصل نمایید.

فرم سفارش تحلیل

تماس با ما جهت انجام تحقیق

 

 

 

 

دانلود کتاب آموزش تصویری نمونه گیری با SPSS Sample Power

حجم نمونه  برای  تحلیل رگرسیون ( Regression)درIBM SPSS Sample power

کتاب-آموزش-تصویری-نمونه-گیری-با-SPSS-Sample-Power.jpg

 دانلود کتاب آموزش تصویری نمونه گیری با SPSS Sample Power (کتابی که نیازمند هر محققی می باشد- برای خرید و دریافت مستقیم کتاب زیر دکمه زیر کلیک کنید.

حجم نمونه  برای  تحلیل رگرسیون ( Regression)درIBM SPSS Sample power

اگر  در منوی اصلی نرم افزار تحلیل واریانس  (ANova) را انتخاب کنیم گزینه های زیر را به ما می دهد.

پارامتر اصلی  محقق در این موارد ضریب تعیین یا R2 است.

 www.rava20.ir

اگر می خواهید حجم نمونه تحقیقتان با نرم افزار IBM SPSS Sample power  انجام گیرد یا تمایل داشتید  آموزش این نرم افزار را ببینید و خودتان این کار را انجام دهید با ما تماس بگیرید.

تماس با ما

ما قصد داریم تحلیل داده های شما را با کم ترین هزینه و بالاترین کیفیت انجام بدهیم. قیمت تحلیل ها بسیار پایین می باشد و پایین تر از هر جای دیگر است و بسته به نوع و میزان کار بین 200 تا 300 هزار تومان خواهد بود. فعلاً تحلیل داده های آماری با نرم افزارهای SPSS- PLS – Amos و نرم افزار کیفی Maxquda انجام می گیرد. جهت سفارش تحلیل یا اینکه فرم زیر را تکمیل یا اینکه با ما تماس حاصل نمایید.

فرم سفارش تحلیل

تماس با ما جهت انجام تحقیق

 

 

تاب آموزش تصویری نمونه گیری با SPSS Sample Power

کتاب آموزش تصویری نمونه گیری با SPSS Sample Power
دانلود کتاب آموزش تصویری نمونه گیری با SPSS Sample Power

دانلود کتاب آموزش تصویری نمونه گیری با SPSS Sample Power



حجم نمونه  برای  تحلیل واریانس ( ANOVA)درIBM SPSS Sample power

کتاب-آموزش-تصویری-نمونه-گیری-با-SPSS-Sample-Power.jpg

 دانلود کتاب آموزش تصویری نمونه گیری با SPSS Sample Power (کتابی که نیازمند هر محققی می باشد- برای خرید و دریافت مستقیم کتاب زیر دکمه زیر کلیک کنید.

حجم نمونه  برای  تحلیل واریانس ( ANOVA)درIBM SPSS Sample power

اگر  در منوی اصلی نرم افزار تحلیل واریانس  (ANova) را انتخاب کنیم گزینه های زیر را به ما می دهد.

ادامه‌ی خواندن

تعیین حجم نمونه بر اساس پارامتر همبستگی (correlations ) درIBM SPSS Sample power

کتاب-آموزش-تصویری-نمونه-گیری-با-SPSS-Sample-Power.jpg

 دانلود کتاب آموزش تصویری نمونه گیری با SPSS Sample Power (کتابی که نیازمند هر محققی می باشد- برای خرید و دریافت مستقیم کتاب زیر دکمه زیر کلیک کنید.

تعیین حجم نمونه بر اساس پارامتر همبستگی (correlations ) درIBM SPSS Sample power

اگر  در منوی اصلی نرم افزار میانگین  (correlations) را انتخاب کنیم گزینه های زیر را به ما می دهد.

پارامتر اصلی  محقق در این موارد همبستگی است. این گزینه  مناسب  موقعیت هایی است که  با  آزمون هایی کار می کنیم که پارامتر اصلی آن ها  همبستگی هستیم. دو گزینه اول برای موقعتی اند که ما تنها با پارامتر  همبستگی کار می کنیم. این دو گزینه یک کار را انجام می دهند . گزینه 1 برای موقعیتی است که همبستگی را صفر در نظر می گیریم و گزینه دوم برای موقعیتی است که برای همبستگی عددی را تعریف می کنیم، پس شامل گزینه اول هم می شود. گزینه سوم برای موقعیتی است که با یک متغیر تعدیل گر سر و کار داریم ، و می خواهیم شدت همبستگی را بر اساس آن متغیر تعدیل گر مورد بررسی قرار دهیم.

اگر می خواهید حجم نمونه تحقیقتان با نرم افزار IBM SPSS Sample power  انجام گیرد یا تمایل داشتید  آموزش این نرم افزار را ببینید و خودتان این کار را انجام دهید با ما تماس بگیرید.

تماس با ما

تاب آموزش تصویری نمونه گیری با SPSS Sample Power

کتاب آموزش تصویری نمونه گیری با SPSS Sample Power
دانلود کتاب آموزش تصویری نمونه گیری با SPSS Sample Power

دانلود کتاب آموزش تصویری نمونه گیری با SPSS Sample Power



تعیین حجم نمونه بر اساس پارامتر نسبت ( Proportions ) درIBM SPSS Sample power

کتاب-آموزش-تصویری-نمونه-گیری-با-SPSS-Sample-Power.jpg

 دانلود کتاب آموزش تصویری نمونه گیری با SPSS Sample Power (کتابی که نیازمند هر محققی می باشد- برای خرید و دریافت مستقیم کتاب زیر دکمه زیر کلیک کنید.

تعیین حجم نمونه بر اساس پارامتر نسبت ( Proportions ) در

IBM SPSS Sample power

اگر  در منوی اصلی این نرم افزار میانگین  ( Proportions ) را انتخاب کنیم گزینه های زیر را به ما می دهد.

پارامتر اصلی  محقق در این موارد نسبت  است.

کسانی که تمایل دارند حجم نمونه تحقیقشان با نرم افزار IBM SPSS Sample power  انجام گیرد یا تمایل داشتند  آموزش این نرم افزار را ببینند و خودشان این کار را انجام دهند با ما تماس بگیرند.

تماس با ما

 

دانلود کتاب آموزش تصویری نمونه گیری با SPSS Sample Power

تاب آموزش تصویری نمونه گیری با SPSS Sample Power

کتاب آموزش تصویری نمونه گیری با SPSS Sample Power
دانلود کتاب آموزش تصویری نمونه گیری با SPSS Sample Power

دانلود کتاب آموزش تصویری نمونه گیری با SPSS Sample Power



تعیین حجم نمونه بر اساس پارامتر میانگین ( Means ) درIBM SPSS Sample power

کتاب-آموزش-تصویری-نمونه-گیری-با-SPSS-Sample-Power.jpg

 دانلود کتاب آموزش تصویری نمونه گیری با SPSS Sample Power (کتابی که نیازمند هر محققی می باشد- برای خرید و دریافت مستقیم کتاب زیر دکمه زیر کلیک کنید.

تعیین حجم نمونه بر اساس پارامتر میانگین ( Means ) درIBM SPSS Sample power

اگر در منوی اصلی نرم افزارIBM SPSS Sample power میانگین ( Means ) را انتخاب کنیم گزینه های زیر را به ما می دهد.

پارامتر اصلی محقق در این موارد میانگین است.

کسانی که می خواهند حجم نمونه تحقیقشان با نرم افزار IBM SPSS Sample power  انجام گیرد یا تمایل داشتند  آموزش این نرم افزار را ببینند و خودشان این کار را انجام دهند با ما تماس بگیرند.

تماس با ما

دانلود کتاب آموزش تصویری نمونه گیری با SPSS Sample Power

کتاب آموزش تصویری نمونه گیری با SPSS Sample Power
دانلود کتاب آموزش تصویری نمونه گیری با SPSS Sample Power

دانلود کتاب آموزش تصویری نمونه گیری با SPSS Sample Power

یک دامنه  ( 1tailed ) (فرضیه جهت دار)  یا دو دامنه بودن( 2tailed )  فرضیه بدون جهت و اثر آن بر اندازه حجم نمونه

یک دامنه  ( 1tailed ) (فرضیه جهت دار)  یا دو دامنه بودن( 2tailed )  فرضیه بدون جهت

یک دامنه  ( 1tailed ) (فرضیه جهت دار)  :

هنگامی که در یک فرضیه پژوهشگر پیش بینی کند که تغییرات یک متغیر باعث افزایش یا کاهش متغیر یا متغیرهای دیگری می شود، آن فرضیه جهت دار است.

مثال: فرسودگی شغلی و مدیریت زمان همبستگی معکوس دارند (یک دامنه)

H0:   p= 0

H1:   p< 0

در فرضیه بالا جهت همبستگی بین دو متغیر مشخص است ( به صورت معکوس است).

وقتی فرضیه جهت  باشد باشد،  سطح آلفا  در  یک دامنه توزیع نمونه ای خودش را نشان می دهد، پس  وقتی می گوییم فرضیه  جهت  دار (آزمون ما آزمون  یک  دامنه است) و ناحیه رد فرض صفر در یکی از دامنه های (راست یا چپ) پخش  می شود.  مثلاً اگر آلفا را 5% در نظر گرفته ایم این 5% در  سمت راست  یا چپ توزیع قرار می گیرد ، در مثال بالا چون رابطه منفی است این 5% در سمت چپ توزیع قرار می گیرد و آماره آزمون ما اگر در این ناحیه  قرار بگیرد فرضیه صفر را رد می کنیم.

دو دامنه  ( 2tailed ) (فرضیه بدون جهت)  :

فرضیه ای را بدون جهت گویند که جهت تاثیر و رابطه متغیر مستقل بر متغیر وابسته مشخص نباشد.

فرسودگی شغلی و مدیریت زمان همبستگی دارند (2 دامنه)

H0:   p= 0

H1:   p= 0

در فرضیه بالا جهت همبستگی بین دو متغیر مشخص نیست و معلوم نیست که اگر یکی از متغیر ها افزایش یابد متغیر دیگر کاهش پیدا می کند یا افزایش ، فقط گفته که بین آن ها رابطه ای وجود دارد.

وقتی فرضیه بدون جهت باشد،  سطح آلفا  در دو دامنه توزیع نمونه ای خودش را نشان می دهد، پس  وقتی می گوییم فرضیه بدون جهت (آزمون ما آزمون دو دامنه است) و ناحیه های رد فرض صفر در هر یک از دامنه های (راست یا چپ) پخش شده. مثلاً اگر آلفا را 5% در نظر گرفته ایم 5/2 درصدآن در چپ و 5/2 درصد در سمت راست  توزیع قرار می گیرد و آماره آزمون ما اگر در این ناحیه ها قرار بگیرد فرضیه صفر را رد می کنیم.

توجه شود که: آزمون های یک دامنه از توان بیشتری برخوردارند . پس اگر پژوهشگر فرضیه اش را به صورت یک دامنه یا دو دامنه مطرح کرده این را به هنگام انتخاب حجم نمونه باید در نظر بگیرد.

برای تعیین حجم نمونه پژوهش تان  با نرم افزار IBM SPSS Sample power  و   آموزش کاربردی  این نرم افزار،  با ما تماس بگیرند.

تماس با ما