بایگانی دسته: آموزش pls

تحلیل داده های آماری

روایی واگرا (تشخیصی)

روایی واگرا (تشخیصی)

روایی واگرا

روایی واگرا Discriminant validity معیاری است که نشان می‌دهد چقدر سنجه‌های عوامل متفاوت واقعا باهم تفاوت دارند. در یک پرسشنامه برای سنجش عوامل مختلف سوالات متعددی مطرح می‌شود بنابراین لازم است که مشخص شود این سوالات از یکدیگر متمایز بوده و باهم همپوشانی ندارند.

این معیار در برابر روایی همگرا یا Convergent validity قرار می‌گیرد و گاهی به عنوان Divergent validity نیز در مقاله‌های علمی از آن یاد می‌شود. روایی همگرا به همبستگی سوالات یک سازه باهم اشاره دارد و روایی واگرا بر عدم همبستگی بین سوالات یک سازه با سوالات سازه دیگر دلالت دارد.

یکی از مهمترین مسائل در پژوهش‌ها، تعیین میزان روایی و پایایی ابزار گردآوری داده‌های پژوهش است. در بخش اعتبار یا روایی پرسشنامه Reliability، پژوهش­گر در پی آن است که مشخص سازد آیا یافته‌های بدست آمده از پژوهش را می‌توان به کل جامعه یا گروه‌های مشابه آن تعمیم داد یا خیر؟ برخلاف پایایی یا اعتماد که مسئله‌ایی کمی است و اندازه‌گیری آن ساده‌تر است اعتبار پرسشنامه، مسأله‌ای کیفی است و اندازه‌گیری و ارزیابی آن مشکل‌تر است. روایی به این سوال پاسخ می‌دهد که ابزار اندازه‌گیری تا چه حد خصیصه مورد نظر را می‌سنجد.

در نرم افزار Smart PLS و تکنیک حداقل مربعات جزیی سه روش برای محاسبه روایی وجود دارد:

  • روایی سازه
  • روایی همگرا
  • روایی واگرا

تعریف روایی واگرا

روایی واگرا نشان می‌دهد چقدر سوالات یک عامل با سوالات سایر عوامل تفاوت دارند. این معیار یکی از معیارهای اصلی برازش مدل‌های اندازه‌گیری در روش PLS است و براساس بارهای عاملی مربوط به گویه‌های هر سازه تعیین می‌شود. روایی واگرا بر همبستگی پایین سنجه‌های یک متغیر پنهان با یک متغیر غیر مرتبط با آن (از نظر پژوهشگر) اشاره دارد. این معیار در روش حداقل مربعات جزئی از دو طریق سنجیده می‌شود. یکی روش بارهای عاملی متقابل است که میزان همبستگی بین شاخص‌های یک سازه را با همبستگی آن‌ها با سازه‌های دیگر مقایسه می‌کند و روش دیگر معیار پیشنهادی فورنل و لارکر Fornell & Larcker است که در این پژوهش مورد استفاده قرار گرفته است.

کلاس فورنل و دیوید لارکر

روایی واگرا  یا در برابر روایی همگرا validity قرار دارد. فورنل و لارکر (۱۹۸۱) بیان کردند روایی واگرا وقتی در سطح قابل قبول است که میزان AVE برای هر سازه بیشتر از واریانس اشتراکی بین آن سازه و سازه‌های دیگر (یعنی مربع مقدار ضرایب همبستگی بین سازه‌ها) در مدل باشد. بر این اساس روایی واگرای قابل قبول یک مدل اندازه‌گیری حاکی از آن است که یک سازه در مدل تعامل بیشتری با شاخص‌های خود دارد تا با سازه‌های دیگر. در روش حداقل مربعات جزئی و مدلیابی معادلات ساختاری، این امر به وسیله یک ماتریس صورت می‌گیرد که خانه‌های این ماتریس حاوی مقادیر ضرایب همبستگی بین سازه‌ها و قطر اصلی ماتریس جذر مقادیر AVE مربوط به هر سازه است.

در نرم افزار Smart PLS از قسمت Latent Variable Correlations در فایل خروجی استفاده می‌شود. قطر اصلی هم از مجذور AVE استفاده می‌شود.

روایی تشخیصی چیست؟

منظور از روایی تشخیصی همان روایی واگرا است. در زبان لاتین از دو اصطلاح Discriminant validity و Divergent validity استفاده می‌شود. این اصطلاح هر دو معادل هم استفاده می‌شوند و در مقاله‌های مختلف به جای هم به کار می‌روند. در زبان فارسی واژه Discriminant به معنای مشخص‌کننده یا تفکیک کننده ترجمه می‌شود. واژه Divergent نیز به صورت منشعب یا واگرا ترجمه می‌شود. بنابراین هر دو اصطلاح یکسان هستند و روایی تشخیصی چیز جدیدی نیست.

سه نگردد بریشم ار او را —– پرنیان خوانی و حریر و پرند

اگر به ابریشم بگویید پرند، پرنیان و حریر بازهم همان ابریشم است.

روایی واگرای یگانه-دوگانه HTMT

معیار Heterotrait-Monotrait Ratio یا شاخص HTMT در کانون تحلیل آماری پارس مدیر با عنوان معیار روایی یگانه-دوگانه ترجمه شده است. این معیار توسط هنسلر و همکاران (۲۰۱۵) برای ارزیابی روایی گرا ارائه شده است. معیار HTMT جایگزین روش قدیمی فورنل-لارکر شده است. حد مجاز معیار HTMT میزان ۰/۸۵ تا ۰/۹ می‌باشد. اگر مقادیر این معیار کمتر از ۰/۹ باشد روایی واگرا قابل قبول است. امکان محاسبه شاخص HTMT در نرم افزار Smart PLS 3 وجود دارد. برای این منظور باید رویه بوت‌استراپینگ کامل را اجرا کنید.

برگرفته از پارس مدیر – نویسنده آرش حبیبی

دانلود کتاب آموزش تصویری تعیین حجم نمونه با Spss sample power نرم افزار

پایان نامه نویسی

روایی همگرا

روایی همگرا و پایایی ترکیبی

روایی همگرا Convergent Validity یک سنجه کمی است که میزان همبستگی درونی و همسویی گویه‌های سنجش یک مقوله را نشان می‌دهد. مفهوم روایی پرسشنامه (اعتبار) به این سوال پاسخ می‌دهد که ابزار اندازه‌گیری تا چه حد خصیصه مورد نظر را می‌سنجد. پایایی پرسشنامه (قابلیت اعتماد) با این امر سروکار دارد که ابزار اندازه‌گیری در شرایط یکسان تا چه اندازه نتایج یکسانی را به دست می‌دهد. به عبارت دیگر همبستگی میان یک مجموعه از نمرات و مجموعه دیگری از نمرات در یک ازمون معادل که به صورت مستقل بر یک گروه آزمودنی به دست آمده است. روش‌های متعددی برای محاسبه روایی وجود دارد که روایی همگرا یکی از آنها است.

هرگاه یک سازه (متغیر پنهان) براساس چند گویه (متغیر مشاهده پذیر) اندازه‌گیری شود همبستگی بین گویه‌های آن بوسیله روایی همگرا قابل بررسی است. اگر همبستگی بین بارهای عاملی گوبه‌ها بالا باشد، پرسشنامه از نظر همگرایی معتبر می‌باشد. این همبستگی برای اطمینان از این که آزمون آنچه را که باید سنجیده شود می‌سنجد، ضروری است. برای روایی همگرا باید میانگین واریانس استخراج شده (AVE) محاسبه شود.

میانگین واریانس استخراج شده : AVE

میانگین واریانس استخراج شده یا AVE مخفف Average Variance Extracted می‌باشد. این شاخص توسط فورنل و لارکر به سال ۱۹۸۱ معرفی شده است. اعتبار همگرا براساس مدل بیرونی و با محاسبه میانگین واریانس استخراج (AVE) بررسی می‌شود. معیار AVE نشان دهنده میانگین واریانس به اشتراک گذاشته شده بین هر سازه با شاخص‌های خود است. به بیان ساده‌تر AVE میزان همبستگی یک سازه با شاخص‌های خود را نشان می‌دهد که هرچه این همبستگی بیشتر باشد، برازش نیز بیشتر است. فورنل و لارکرمعتقدند روایی همگرا زمانی وجود دارد که AVE از ۰/۵ بزرگتر باشد.

بطورکلی در یک پرسشنامه عوامل متعددی وجود دارد و هر عامل نیز براساس تعدادی گویه موردسنجش قرار می‌گیرد. در روایی محتوایی از نظر داوران برای سنجش میزان درستی و مناسب بودن گویه‌ها استفاده می‌شود اما معیار AVE یک شاخص کمی برای سنجش روایی است. این معیار از بارهای عاملی مربوط به هر گویه برای سنجش آن استفاده می‌شود. در واقع این معیار نشان می‌دهد چقدر گویه‌های سنجش هر مقوله با هم از همبستگی کافی و بالایی برخوردار هستند.

محاسبه روایی همگرا در لیزرل و اموس

شکل زیر یک نمونه تحلیل عاملی تاییدی در نرم افزار لیزرل است. در این شکل دو عامل اصلی (متغیر پنهان) و ۶ گویه وجود دارد یعنی برای هر عامل سه گویه در نظر گرفته شده است. بارهای عاملی با λ نشان داده شده است. با توجه به فرمول مندرج در بالای صفحه کافی است تا مقادیر بارعاملی هر گویه را به توان دو برسانید و بعد میانگین آنها را حساب کنید. برای مثال برای سازه D1 روایی همگرا به صورت زیر قابل محاسبه است:

AVED1= [0.972+0.962+0.922]/3 = 0.903

محاسبه روایی همگرا

محاسبه روایی همگرا

محاسبه مقدار خطا

یکی از پارامترهای جالب دیگری که میتوانید با دست حساب کنید مقدار خطا است. مقدار خطا که با حرف e در شکل فوق نشان داده است به سادگی با رابطه زیر قابل محاسبه است:

e = 1- λ۲

بنابراین مشاهده می‌شود که مقدار ۰/۰۶ برای گویه شماره یک با دست نیز قابل محاسبه است.

محاسبه روایی همگرا در Smart PLS

اصول محاسبه اعتبار همگرا در نرم افزار PLS و تکنیک حداقل مجذورات جزیی نیز ثابت است ولی این نرم افزار برخلاف لیزرل مقدار AVE را بدست می‌دهد و نیازی نیست با دست آن را محاسبه کنید. برای محاسبه روایی همگرا در نرم افزار PLS  کافی است به خروجی این نرم افزار رجوع کنید.

پایایی ترکیبی CR

پایایی ترکیبی یا CR مخفف Composite Reliability می‌باشد. روایی همگرا زمانی وجود دارد که CR از ۰.۷ بزرگتر باشد. همچنین CR باید از AVE بزرگتر باشد. در اینصورت هم شرط روایی همگرا وجود خواهد داشت. بطور خلاصه داریم:

CR > 0.7
CR > AVE
AVE > 0.5

با استفاده از بارهای عاملی به سادگی می‌توان روایی همگرا را در نرم افزار لیزرل محاسبه کرد.

برگرفته از پارس مدیر – نویسنده آرش حبیبی

دانلود کتاب آموزش تصویری تعیین حجم نمونه با Spss sample power نرم افزار

آموزش نرم افزارهای آماری

بوت‌استراپینگ در حداقل مربعات جزئی

بوت‌استراپینگ در حداقل مربعات جزئی

بوت‌استراپینگ در حداقل مربعات جزئی

بوت‌استراپینگ در حداقل مربعات جزئی یک شیوه خودگردان سازی یا استفاده مجدد از نمونه برای برآورد آماره تی و سنجش معناداری روابط است. به عبارت دیگر بوت‌استراپینگ Bootstrapping آماره آزمون برای سنجش معناداری روابط میان متغیرها را محاسبه می‌کند.

حداقل مربعات جزئی فرض توزیع نرمال داده‌ها را ندارد به این معنی که آزمون معناداری پارامترها در تحلیل رگرسیون را نمی‌توان برای آزمون اینکه آیا ضرائبی نظیر وزن‌ها بیرونی، بارهای بیرونی و ضرائب مسیر، معنادار هستند، بکار برد. در عوض حداقل مربعات جزئی برای آزمون معناداری پارامترها بر رویه ناپارامتریک بوت استراپ تکیه کرده است.

در  روش بوت استرپ تعداد زیادی زیر نمونه (نمونه‌های بوت استراپ) به روش جایگذاری بیرون کشیده می‌شود. جایگذاری به این معنا که هر زمان یک مشاهده به صورت تصادفی از جامعه نمونه‌گیری بیرون کشیده شد، قبل از بیرون شدن مشاهده بعدی، به جامعه نمونه‌گیری بر می‌گردد. یعنی جامعه‌ای که مشاهدات از آن استخراج می‌شود، همواره حاوی عناصر مشابه است. بنابراین یک مشاهده می‌تواند بیش از یک مرتبه انتخاب شود یا در تمام زیرنمونه‌ها اصلا انتخاب نشود. تعداد نمونه‌های بوت‌استرپ باید بالا باشد اما باید حداقل برابر با تعداد مشاهدات معتبر در مجموع داده‌ها باشد. در نتیجه ۵۰۰۰ نمونه بوت‌استراپ پیشنهاد می‌شود.

بوت‌استراپینگ در نرم افزار PLS

اگر از توضیحات دکتر آذر در زمینه بوت‌استراپینگ خیلی سر در نیاوردید من با یک مثال این روش را برای شما توضیح می‌دهم. بوت‌استراپ Bootstrap همانطور که از نامش پیدا است به معنای تسمه پوتین و معادل آن در فارسی خودگردان‌سازی است. همانطور که شما تسمه پوتین را می‌کشید تا پوتین در پای شما جا بیفتد، رویه‌های مبتنی بر بوت‌استراپینگ نیز کمک می‌کنند تا یک مقوله دشوار برای محاسبات نرم‌افزاری، ساده شود.

تسمه پوتین (بوت‌استراپ)

تسمه پوتین (بوت‌استراپ)

کاربرد اصلی بوت‌استراپ در حداقل مربعات جزئی سنجش معناداری روابط میان متغیرها است. بعد از اینکه مدل را ترسیم کردید برای اجرای بوت‌استراپینگ از منوی Calculate گزینه bootstrapping را انتخاب کنید. همچنین در نوار ابزار نیز می‌توانید به صورت زیر از bootstrapping استفاده کنید:

مسیر bootstrapping در PLS

مسیر bootstrapping

با اجرای این دستور آماره آزمون معادل آماره t-value در نرم افزار لیزرل و اموس محاسبه شده و برای تمامی روابط نمایش داده می‌شود. یک نمونه از خروجی دستور بوت‌استراپینگ در نرم افزار حداقل مربعات جزئی به صورا زیر است:

خروجی بوت‌استراپینگ در نرم افزار حداقل مربعات جزئی

خروجی بوت‌استراپینگ در نرم افزار حداقل مربعات جزئی

اعداد روی پیکان اتصال متغیرها به یکدیگر معادل همان آماره t می‌باشد. در سطح اطمینان ۹۵% چنانچه مقدار آماره آزمون از ۱/۹۶ بزرگتر باشد آن رابطه معنادار است. برای مثال آماره آزمون معناداری رابطه رضایت و وفاداری ۳/۱۱۴ بدست آمده است که از مقدار بحرانی ۱/۹۶ بزرگتر است بنابراین رابطه رضایت و وفاداری معنادار است (آرش حبیبی، پارس‌مدیر).

روند تحلیل بوت‌استراپینگ

در بوت‌استراپ لازم است توجه داشته باشید اندازه هر نمونه بوت‌استراپ باید صریحاً مشخص شود. دستورالعمل پذیرفته شده این است که هر نمونه از بوت‌استراپ باید تعداد مشابهی مشاهده نسبت نمونه اصلی داشته باشد. معمولا در ماژول بوت استراپ نرم افزار Smart PLS موارد بوت‌استراپ نامیده می‌شود. برای مثال اگر نمونه اصلی دارای ۱۳۰ مشاهده معتبر باشد، هرکدام از ۵۰۰۰ نمونه بوت‌استراپ باید شامل ۱۳۰ مورد باشد. در غیر اینصورت، نتایج آزمون معناداری به صورت سیستماتیک دارای اریبی هستند.

توجه داشته باشید که وقتی از جایگذاری مورد به مورد برای برخورد با مقادیر گم شده استفاده می‌شود، بسیار مهم است که از تعداد نهایی مشاهدات که برای برآورد مدل استفاده می‌شود، مطلع باشید. نمونه‌های بوت‌استراپ برای برآورد مدل مسیری حداقل مربعات جزئی استفاده می‌شود. یعنی، وقتی از ۵۰۰۰ نمونه بوت استراپ استفاده می‌شود، ۵۰۰۰ مدل مسیری حداقل مربعات جزئی برآورد می‌شود.

فاصله اطمینان بوت‌استراپ

تنها به جای گزارش معناداری پارامتر، گزارش فاصله اطمینان بوت‌استراپ که اطلاعات بیشتری در مورد ثبات برآورد یک ضریب فراهم می‌کند، ارزشمند است. فاصله اطمینان، دامنه‌ای است که در آن پارامتر واقعی جامعه با فرض سطح معینی از اطمینان (برای مثال ۹۵%) در آن قرار می‌گیرد.

در زمینه حداقل مربعات جزئی نیز درباره فاصله اطمینان بوت‌استراپ صحبت می‌شود زیرا ساخت فاصله، براساس خطاهای معیار بدست آمده از رویه بوت‌استراپینگ است. بسط این رویکرد، آزمون معناداری شامل فاصله اطمینان بوت‌استراپینگ اصلاح شده هنسلر و همکاران می‌باشد. از آنجاییکه فواصل اطمیان بوت‌استراپ و فواصل بوت‌استراپ اصلاح شده اریبی معمولاً زیاد متفاوت نیستند، مقاله هنسلر و همکاران پیشنهاد می‌شود.

برگرفته از پارس مدیر – نویسنده آرش حبیبی

دانلود کتاب آموزش تصویری تعیین حجم نمونه با Spss sample power نرم افزار

آموزش نرم افزارهای آماری

تحلیل مسیر

تحلیل مسیر

آموزش تحلیل مسیر

تحلیل مسیر (path analysis) روشی آماری مبتنی بر تحلیل رگرسیون چند متغیرى است که برای سنجش روابط متغیرها در یک مدل علّی استفاده می‌شود. در این روش از ضریب بتای استاندارد رگرسیون جهت تعیین جهت و شدت روابط میان متغیرها استفاده می‌شود. مقدار آماره تی نیز معناداری روابط را نشان می‌دهد.

هدف تحلیل مسیر به دست آوردن برآوردهاى کمى روابط على ( همکنشی یکجانبه یا کواریته) بین مجموعه اى از متغیرهاست. ساختن یک مدل علی لزوماً به معنای وجود روابط علی در بین متغیرهای مدل نیست بلکه این علیت بر اساس مفروضات همبستگی و نظر و پیشینه تحقیق استوار است. برای انجام محاسبات مربوط به تحلیل مسیر می‌توان از نرم‌افزار SPSS استفاده کرد.

تحلیل مسیر جهت و شدت روابط متغیرهای تحقیق را نشان می‌دهد. مقادیری که جهت و میزان تاثیر میان متغیرها را نشان می‌دهند ضریب مسیر نامیده می‌شوند و با به صورت قراردادی با حرف بتای لاتین β نمایش داده می‌شوند. ضرایب مسیر همان ضریب استاندارد شده رگرسیون هستند. بنابراین برای تحلیل مسیر باید از رگرسیون خطی ساده استفاده شود. تحلیل مسیر تنها بر روی متغیرهای قابل مشاهده انجام پذیر است و اگر بخواهید بین ابعاد تحلیل مسیر را اجرا کنید باید میانگین سوالات هر بعد را حساب کنید تا متغیر پنهان به یک متغیر قابل مشاهده تبدیل شود.

پیش‌فرض‌های تحلیل مسیر

برای انجام این محاسبات باید پیش‌فرض‌هایی در نظر گرفته شود که مهم‌ترین آنها عبارتند از:

  • به ازای هر متغیر در مدل بین ۱۰ تا ۲۰ نمونه لازم است.
  • از متغیرهای نسبی و فاصله‌ای استفاده شود.
  • وجود رابطه خطی بین متغیرهای پیش بین با متغیر وابسته (Residual plot in regression Scatterplots)
  • استقلال خطاها یا غیر همبسته بودن جملات خطای متغیرها (آزمون دوربین-واتسون)
  • نرمال بودن داده‌ها و مشخص کردن آن با آزمون (Komogorov-Smirnov statistic)
  • عدم وجود همخطی چندگانه (Multicollinearity)
  • هم‌خطی بودن چندگانه زمان بروز می‌یابد که بین حداقل دو متغیر مستقل همبستگی بالایی وجود داشته باشد.
  • یک سویه بودن جهت مدل (Recursive)

منظور از یک سیوه بودن این است که اگر A بر B تاثیر داشته باشد و B بر C اثر داشته باشد C بر A نمی تواند تاثیر داشته باشد. همچنین در بیشتر مطالعه مدیریت و علوم اجتماعی از طیف لیکرت استفاده می‌شود. این مقیاس رتبه‌ای است لیکن بسیاری از پژوهشگران با کمی تسامح مقیاس لیکرت را مقیاس فاصله‌ای در نظر می‌گیرند.

اصول ترسیم نمودار مسیر

۱- عدم وجود حلقه

۲- عدم وجود مسیر رفت و برگشت بین متغیرها

۳- حداکثر تعداد همبستگی‌های مجاز بین متغیرهای درونزا برابر با تعداد مسیرها

خطاهای ترسیم مدل مسیر

خطاهای ترسیم مدل در تحلیل مسیر

متغیر‌های درونزا و برونزا

متغیرهای یک مدل می‌توانند درون‌زا (Endogenous) یا برون‌زا (Exogenous) باشند بنابراین سه نوع متغیر قابل تمایز است:

متغیر مستقل برونزا : متغیری که از هیچ متغیر دیگری تاثیر نمی گیرد اما بر همه یا برخی متغیرهای مدل تاثیر دارد. مقدار متغیر برونزا توسط سایر متغیرهای درون مدل تعیین نمی شود بلکه مقدار آن درخارج مدل تعیین می‌شود. متغیر برونزا متغیری است که هیچ اثری از سایر متغیرهای الگو و مدل طراحی شده نمی پذیرد.

متغیر مستقل درونزا (میانجی) : متغیری که از برخی متغیرها تاثیر می‌گیرد و برخی متغیرها تاثیر می‌گذارد.

متغیر وابسته : متغیری است که بر هیچ متغیری تاثیری ندارد اما از همه یا برخی متغیرهای مدل تاثیر می‌پذیرد.

از نظر نموداری متغیر برونزا متغیری است که هیچ فلشی به آن وارد نمی شود در حالیکه متغیر درونزا متغیری است که حداقل یک فلش به آن وارد می‌شود.

متغیر‌های درونزا و برونزا

متغیر‌های درونزا و برونزا

مسیر

مسیر در مدل علّی نشان دهنده اثر یک متغیر بر متغیر دیگر است. در تحلیل مسیر معمولا مسیر را با یک فلش جهت دار یک طرفه که ازمتغیر برونزا به متغیر مربوطه درونزا رسم شده است نمایش می‌دهند. میزان تاثیر متغیر i بر متغیر j با نماد βij نمایش داده می‌شود. اگر این مقدار منفی باشد یعنی رابطه معکوس است و اگر مثبت باشد این رابطه مستقیم است. مقدار ضریب بتا بین [۱ و ۱-] است و هر چه قدر مطلق این مقدار از ۰/۳ بیشتر باشد نشان می‌دهد تاثیر قوی تر است. اگر مقدار آماره t از ۱/۹۶ بزرگتر باشد رابطه معنادار است.

جملات خطا

جمله خطا یا error term نشان دهنده میزانی از واریانس متغیر درونزا است که از سوی متغیرهای موثر بر آن تبیین می‌گردد. بنابر این در یک مدل علّی به تعداد متغیرهای درونزا، جمله خطا وجود دارد. جمله خطا را معمولا با حرف e یا d نمایش می‌دهند. به میزان خطای باقیمانده residual نیز گویند و در یک مدل مسیر با استفاده از جذر ۱-R2 محاسبه می‌شود. منظور از R2 ضریب تشخیص (ضریب تعیین) است که مجذور ضریب بتای استاندارد می‌باشد.

طراحی مدل مسیر

برای طراحی مسیر ابتدا متغیرهای مدل را مشخص کنید. سپس براساس فرضیه‌های تحقیق جهت روابط را تعیین کنید. بری آزمون فرضیه‌های تحقیق نیز از رگرسیون خطی ساده استفاده کنید. ضرایب بتا و مقادیر خطا را به مدل منتقل کنید. دقت کنید میزان همبستگی متغیرهای مستقل برونزا را با روش پیرسون تعیین کنید. بین متغیرهای مستقل برونزا یک فلش دو جهته وجود دارد که همان ضریب همبستگی پیرسون است.

یک مدل مسیر می‌تواند دارای متغیر میانجی (Mediator) باشد و حتی نقش متغیرهای تعدیلگر (Moderator) نیز می‌تواند بررسی شود.

خروجی این مرحله ممکن است مجموعه‌ای از فرضیه‌های مرتبط و یکپارچه باشد که معمولا از طریق ترسیمی و یا ریاضی بیان می‌شود.

در تحقیقات علوم اجتماعی مدلهای مفهومی معمولا به روش ترسیمی و نموداری بیان می‌شوند.

برای آزمون مدل مفهومی می‌توان از رگرسیون در نرم افزار spss استفاده نمود.

انواع روابط بین متغیرها در نمودار تحلیل مسیر

۱- اثر مستقیم: بیانگر یک اثر مستقیم متغیر x بر روی متغیر y است.

۲- اثر غیر مستقیم: یک اثر غیرمستقیم متغیر x بر روی y از طریق یک متغیر پیش‌بینی‌کننده دیگر.رابطه بین X و Y وقتى غیر مستقیم است که X علت Z است و Z نیز به نوبه خود در Y اثر دارد.

بسیاری از پژوهشگران مایلند اثر کلی یک متغیر را بر متغیر دیگر محاسبه کنند این کار از طریق جمع اثر مستقیم با مجموع آثار غیرمستقیم آن به دست می‌آید. آثار غیرمستقیم از طریق حاصلضرب ضرائب هر مسیر محاسبه می‌شود:

۳- اثر کاذب: رابطه بین X و Y وقتى کاذب (Spurious) است که Z علت هر دو متغیر X و Y باشد.

۴- اثرات تحلیل نشده: رابطه بین دو متغیر وقتى تحلیل نشده است که هر دوى آنها برونزا (exogenous) بوده و بنابراین تبیین تغییر پذیرى بین آنها توسط مدل امکان پذیر نباشد.

خلاصه و جمع‌بندی

برای اعتبارسنجی الگوی روابط علی میان یک مجموعه از متغیرها می‌توانید از تحلیل مسیر استفاده کنید. در این روش با استفاده از محاسبه ضریب بتای رگرسیون جهت و شدت روابط میان متغیرهای مدل قابل تبیین است. همچنین برای سنجش معناداری روابط می‌توانید از آماره تی استفاده کرده یا به مقدار معناداری مشاهده شده استناد کنید. برای انجام این روش باید پیش‌فرض‌هایی نیز لحاظ شود که در مقاله فوق اشاره گردید. در نهایت در مقایسه این روش با مدل معادلات ساختاری باید گفت مدل‌های ساختاری از اعتبار بیشتری برخوردار هستند.

برگرفته از پارس مدیر – نویسنده آرش حبیبی

دانلود کتاب آموزش تصویری تعیین حجم نمونه با Spss sample power نرم افزار

آموزش نرم افزارهای آماری

حداقل مربعات جزئی PLS

حداقل مربعات جزئی PLS

حداقل مربعات جزئی

آموزش حداقل مربعات جزئی : Partial Least Squares, PLS

حداقل مربعات جزئی یا Partial Least Squares یک روش ناپارامتریک است که جانشین مناسبی برای مدل معادلات ساختاری می‌باشد. روش حداقل مربعات جزئی به حجم نمونه حساسیت کمتری دارد و نیازی به نرمال بودن داده‌ها ندارد. بنابراین در موارد زیر جانشین مدلسازی معادلات ساختاری می‌شود:

  • زمانیکه حجم نمونه کوچک باشد
  • زمانیکه داده‌ها نرمال نباشد

دقت کنید اگر داده‌ها نرمال باشد یا نمونه بزرگ باشد هم می‌توان از حداقل مجذورات جزیی استفاده کرد.

نرم افزارهای متعددی برای حداقل مجذورات جزئی وجود دارد که مهمترین آنها عبارتند از:

  • نرم افزار Visual PLS
  • نرم افزار Smart PLS

یکی از عمده‌ترین دلایل گرایش دانشجویان به استفاده از تکنیک حداقل مربعات جزئی این است که این تکنیک به فرض نرمال بودن جامعه و همچنین حجم نمونه متکی نیست. این در حالی است که برای انجام تکنیک معادلات ساختاری و نرم‌افزار لیزرل به حجم انبوهی از داده‌ها نیاز است. برای حل مسائل حداقل مربعات جزئی یا PLS می‌توانید از نرم افزار SmartPLS استفاده کنید. نرم افزار smartpls یک نرم افزار رایگان است که دریافت آن کمی دردسر دارد ولی در وب سایت پارس‌ مدیر نحوه دانلود آن تشریح شده است.

طراحی مدل حداقل مربعات جزیی

مانند مدل معادلات ساختاری در اینجا نیز باید با دو مفهوم متغیر پنهان و متغیر مشاهده پذیر آشنا باشد. متغیرهای پنهان همان عامل‌های اصلی یا سازه‌ها هستند که در شکل زیر با دایره نمایش داده شده اند. این متغیرها می‌توانند مستقل یا وابسته باشند. متغیرهای مشاهده پذیر همان گویه‌ها یا سوالات پرسشنامه هستند که در شکل زیر با مستطیل نمایش داده شده اند.

ساختار مدل حداقل مجذورات جزیی

ساختار مدل حداقل مجذورات جزیی

مدل درونی و مدل بیرونی

مدل حداقل مجذورات جزئی به دو دو مدل بیرونی و مدل درونی قابل تفکیک است.

مدل بیرونی : مدل بیرونی یا Outer Model روابط گویه‌ها (سوالات پرسشنامه) با عامل‌ها (متغیرهای پنهان) را نشان می‌دهد و معادل تحلیل عاملی تاییدی یا مدل اندازه‌گیری در نرم افزار لیزرل و اموس می‌باشد.

مدل درونی : مدل درونی یا Inner Model مشابه تحلیل مسیر و بخش ساختاری یک مدل معادلات ساختاری است. پس از آزمون مدل بیرونی لازم است تا مدل درونی که نشانگر ارتباط بین متغیرهای پنهان است، ارایه شود. با استفاده از مدل درونی می‌توان به بررسی فرضیه‌های پژوهش مدل پرداخت.

مدل درونی و مدل بیرونی

مدل درونی و مدل بیرونی

تفسیر مدل حداقل مربعات جزئی

برای شناسایی قدرت و جهت روابط میان عناصر از تخمین استاندارد استفاده می‌شود. این مقادیر که در شکل فوق نیز قابل مشاهده است باید بالای ۰/۳ باشند. هرچه میزان بارعاملی بیشتر باشد قدرت روابط بیشتر است.

برای بررسی معناداری باید آماره t برآورد شود. برای این منظور از خودگردان سازی (بوت استراپینگ) یا برش جک-نایف استفاده می‌شود. اگر مقادیر آماره تی بالای ۱/۹۶ باشد رابطه معنادار است.

شاخص‌های برازش مدل

در تکنیک حداقل مجذورات جزئی بر خلاف مدل معادلات ساختاری شاخص‌های زیادی برای برازش وجود ندارد.

عمده ترین شاخص‌های برازش مدل اندازه‌گیری عبارتند از:

عمده ترین شاخص‌های برازش مدل ساختاری عبارتند از:

برای مطالعه بیشتر به بحث شاخص‌های برازش حداقل مربعات جزئی رجوع کنید.

حجم نمونه حداقل مربعات جزئی

بحث تعیین حجم نمونه PLS یکی از مباحث مهم حداقل مجذورات جزئی است. حوزه دیگری که در آن مدلسازی معادلات ساختاری مبتنی بر کوواریانس پیشنهاد می‌شود، شرایطی است که در آن سایز نمونه کوچک است، برای این رویکرد حداقل سایز نمونه باید ۱۰۰ باشد (بدون توجه به خصوصیات سایر داده ها) تا بتوان از راهکارهای مشکل ساز پرهیز کرد و به سطح پذیرش قابل قبولی دست یافت. حتی بسیاری از پژوهشگران، حداقل سایز نمونه را ۲۰۰ پیشنهاد می‌کنند تا از نتایجی که قابل تفسیر نیستند( مانند واریانس منفی و یا همبستگی بالای ۱) پرهیز شود.

حداقل مربعات جزئی در شرایطی که نمونه بسیار کوچک است نیز می‌تواند مورد استفاده قرار بگیرد. اگرچه این گونه شرایط فقط برای تحلیل قدرت آماری می‌تواند بکار برده شود. مونت کارلو نشان داد که این رویکرد می‌تواند برای حجم نمونه کمتر از ۵۰ نیز بکار رود، اچ. ولد با استفاده از ۲۷ متغیر، دو سازه پنهان و مجموعه داده هایی متشکل از ۱۰ نمونه دست به تحلیل زد. با این حال با در نظر گرفتن مشکل پایداری در مقیاس بزرگ، هنوز این مدل با محدودیت هایی روبروست.

جمع بندی بحث حداقل مربعات جزئی

حداقل مربعات جزئی راهکاری برای آزمون فرضیه‌ها است و زمانی بکار میرود که حجم نمونه محدود باشد یا داده‌ها نرمال نباشند. بدون اینکه فرض هایی مانند فرضهای توزیع، و یا مقیاسهای اسمی، ترتیبی، و فاصلهای برای متغیرها، وجود داشته باشند، نتایج کار قابل استفاده میباشد. البته باید این نکته را نیز در ذهن داشت که حداقل مربعات جزئی هم همانند تمامی تکنیکهای آماری، نیازمند فرضهای خاصی است. مهمترین فرضیه، تشخیص “پیش‌بینی کننده” است. این الزام عنوان میکند که باید بخش سیستماتیک رگرسیون خطی را از روی انتظارات موقعیتی از متغیر وابسته تعریف کرد تا بتوان بر اساس رگرسیون نتیجه‌گیری کرد. با این حال، مشکل ثبات و پایداری در مقیاس بزرگ همچنان وجود دارد.

با توجه به مشکل سازگاری در نمونه‌های بزرگ، میتوان در مورد مناسب بودن حداقل مربعات جزئی دچار تردید شد و پرسید که چرا این تکنیک نمی‌تواند یکی از خصوصیت‌های کلیدی یک مدل آماری (پایداری برآوردکننده ) را تضمین کند. پاسخ این است که این رویکرد با اصول خودش وارد وضعیتهای مختلف می‌شود .هدف از مدلسازی معادلات ساختاری مبتنی بر کوواریانس، تعیین ماتریس پارامترهای مدل Φ است که ماتریس کوواریانس پیش‌بینی شده توسط مدل نظری Σ(Φ)احتمال بسیار نزدیکی به ماتریس کوواریانس نمونه S دارد. برای این منظور باید تابع F(S, Σ) تعریف شود. وقتی S=Σ است، این تابع ارزش صفر را به خود اختصاص می‌دهد سایر موارد که ارزش تابع مثبت است، تفاوت بین Σ و S افزایش مییابد. با توجه به اینکه ماتریس کوواریانس نمونه، مبتنی بر احتمال شاخص اندازهگیری شده است، تابعی که بسیار در این خصوص استفاده می‌شود، تابع حداکثر کردن نرمال نظری است.

برگرفته از پارس مدیر – نویسنده آرش حبیبی