تحلیل داده های آماری

آزمون تحلیل واریانس چیست؟ Analysis of Variance test

آزمون تحلیل واریانس چیست؟ Analysis of Variance test

آزمون تحلیل واریانس (ANOVA) یک روش آماری است که برای مقایسه میانگین‌های چندین گروه استفاده می‌شود. این آزمون به ما این امکان را می‌دهد که بررسی کنیم آیا تفاوت‌های معناداری بین میانگین‌های گروه‌های مختلف وجود دارد یا خیر.

به عبارت دیگر، تکنیک آنالیز واریانس برای مقایسه دو یا چند گروه مورد استفاده قرار می‌گیرد تا بررسی شود که تفاوت قابل توجهی دارند یا خیر.

در عمل معمولاً از آزمون T-Student برای مقایسه دو گروه استفاده می‌شود. در حالی که آزمون ANOVA تعمیمی از آزمون T-Student است و بنابراین برای مقایسه ۳ گروه یا بیشتر، کاربرد دارد.

 هدف آزمون ANOVA: هدف اصلی آزمون تحلیل واریانس، بررسی این است که آیا حداقل یکی از گروه‌ها دارای میانگین متفاوتی نسبت به سایر گروه‌ها است یا خیر. به عبارت دیگر، ANOVA به ما کمک می‌کند تا بفهمیم آیا تغییرات مشاهده شده در داده‌ها ناشی از تفاوت‌های واقعی بین گروه‌ها است یا اینکه این تفاوت��ها به خاطر تغییرات تصادفی در داده‌هاست.

2. انواع ANOVA: انواع متفاوتی از ANOVA وجود دارد. به عنوان مثال؛ تحلیل واریانس یک طرفه (One-way ANOVA)، تحلیل واریانس دو طرفه (Two-way ANOVA)، تحلیل واریانس آمیخته (Mixed ANOVA)، تحلیل واریانس با اندازه‌گیری‌های مکرر (repeated measures ANOVA) و غیره

  • ANOVA یک‌طرفه (One-Way ANOVA): برای مقایسه میانگین‌های سه یا چند گروه مستقل که فقط یک متغیر مستقل (عامل) دارند.
  • ANOVA دوطرفه (Two-Way ANOVA): برای بررسی اثر دو متغیر مستقل بر یک متغیر وابسته و همچنین تعامل بین این دو متغیر.
  • تحلیل واریانس با اندازه‌گیری‌های مکرر (repeated measures ANOVA) : در مطالعاتی که در آن‌ها یک گروه از افراد در چندین زمان یا شرایط مختلف اندازه‌گیری می‌شوند، کاربرد دارد.

  • اگرچه از ANOVA برای استنباط در مورد میانگین گروه‌های مختلف استفاده می‌شود، اما این روش «تحلیل واریانس» نامیده می‌شود. علت این نامگذاری آن است که ANOVA، واریانس «بین گروه‌ها» را با واریانس «درون گروه‌ها»، مقایسه می‌کند. اگر واریانس «بین گروه‌ها» (Between Groups) نسبت به واریانس «درون گروه‌ها» (Within Groups) به طور معناداری زیاد نباشد، می‌توان به یکسان بودن میانگین گروه‌ها رای داد. در تصویر زیر واریانس درون گروهی و بین گروهی به طور کامل نشان داده شده است.

مانند هر آزمون دیگر، آنالیز واریانس نیز احتیاج به یک آماره آزمون دارد. آماره آزمون برای ANOVA دارای توزیع F است. این آماره نسبت تغییرات «بین گروه‌ها» به «درون گروهی» را اندازه‌گیری می‌کند(برگرفته از ویرگول)

بزرگ بودن مقدار F نشانه‌ای برای رد فرض صفر است، زیرا مشخص است که صورت بزرگتر از مخرج است. در نتیجه گروه‌ها دارای پراکندگی بین گروهی بیشتری نسبت به پراکندگی درون گروه‌ها هستند. به این ترتیب متوجه می‌شویم که جوامعی که این گروه‌ها را تشکیل می‌دهند، یکسان نیستند. از آنجایی که توزیع نرمال و واریانس نیز ثابت در نظر گرفته شده است، تنها عاملی که باعث تفاوت بین جامعه‌ها است، میانگین است. پس فرض صفر که برابری میانگین گروه‌ها را نشان می‌هد، رد خواهد شد.

مفروضات آزمون ANOVA:

برای آزمون ANOVA، برخی مفروضات وجود دارد که باید برای دستیابی به تفسیر نتایج، برقرار باشند. اگر یک یا چند فرض برآورده نشود، اگرچه انجام این تست‌ها از نظر عملی امکان پذیر است، اما در تفسیر نتایج و اعتماد به نتیجه‌گیری با مشکل روبه‌رو خواهیم بود. فرضیات ANOVA و نحوه آزمون آنها، عبارت‌اند از:

  • نوع متغیرها: آزمون ANOVA به یک متغیر وابسته کمی (مربوط به اندازه‌گیری‌های سوال مدنظر) و یک متغیر مستقل کیفی (با حداقل ۲ سطح که گروه‌ها را برای مقایسه تعیین می‌کند) نیاز دارد.
  • استقلال: داده‌هایی که از کل جامعه به تصادف انتخاب شده‌اند، باید مستقل باشند. فرض استقلال اغلب بر اساس طراحی آزمایش و کنترل کامل شرایط تجربی، در نظر گرفته می‌شود. اگر بر اساس طرح آزمایش هنوز درباره استقلال اطمینان ندارید، از خود بپرسید که آیا یک مشاهده به مشاهدات دیگر ارتباطی دارد؟ اگر پاسخ، منفی است، به احتمال زیاد شما نمونه‌های مستقلی دارید. به صورت دقیق‌تر می‌توان این فرض را با استفاده از آزمون دوربین-واتسون (Durbin-Watson) تست کرد.
  • نرمال بودن: مانده‌ها باید دارای توزیع نرمال باشند. فرض نرمال بودن را می‌توان به استفاده از هیستوگرام و QQ-plot و یا به طور دقیق‌تر از طریق آزمون‌هایی مانند Shapiro-Wilk یا Kolmogorov-Smirnov در نرم افزار R، تست کرد.
  • برابری واریانس‌ها: واریانس گروه‌های مختلف در جامعه، باید با یکدیگر برابر باشند (این فرض با نام همگن بودن واریانس‌ها نیز شناخته می‌شود). برای بررسی این فرض، می‌توان از نمودار جعبه‌ای یا به صورت دقیق‌تر از آزمون‌هایی مانند لون (Levene) و بارتلت (Bartlett) در نرم افزار R، استفاده کرد.

تعریف فرضیات:

  • فرض صفر ((H_0)): میانگین‌های تمام گروه‌ها برابرند.
  • فرض جایگزین ((H_1)): حداقل یک میانگین متفاوت است.

 نتایج: اگر نتیجه آزمون ANOVA نشان دهد که حداقل یک میانگین متفاوت است، می‌توان از آزمون‌های پس‌ازآن (Post-hoc tests) مانند آزمون توکی، شفه یا دانت برای شناسایی گروه‌هایی که تفاوت معناداری دارند، استفاده کرد.

فرسودگی شغلی چیست؟

نوشته

آزمون آماری پیلای یا ( pillai’s test) چیست؟

نوشته

تحلیل عاملی تاییدی چیست؟

نوشته

آیا مدرک زبان در آزمون دکتری اهمیت دارد؟

نوشته

انواع روش های تحلیل کیفی

خدمات تخصصی پژوهش و تحلیل داده های آماری با مناسب‌ترین قیمت و کیفیت برتر!

🌟با تجربه‌ی بیش از 17 سال و ارائه‌ی بهترین خدمات

مشاوره نگارش: تحلیل داده های آماری

ارائه و طراحی پرسشنامه های استاندارد

📊تحلیل داده های آماری با نرم افزارهای کمی و کیفی

📞 تماس: 09143444846 (پیامک، ایتا، واتساپ، تلگرام)

🌐 کانال تلگرام: عضو شوید

🌐 وبلاگ 

💼کیفیت بالا، قیمت مناسب و خدماتی که به نیازهای شما پاسخ می‌دهند!

💼با ما همراه باشید و پروژه‌ی خود را به یک تجربه‌ی موفق تبدیل کنید.

 

 

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *