روش های بررسی نرمال بودن توزیع داده ها و شرایط استفاده از هر روش چیست؟

روش های بررسی نرمال بودن توزیع داده ها و شرایط استفاده از هر روش چیست؟

3 روش اصلی برای بررسی نرمال بودن توزیع داده ها وجود دارد: روش های دیداری و آزمون های آماری [1][2][4].

روش‌های بصری: این روش‌ها شامل ایجاد یک هیستوگرام یا نمودار Q-Q از داده‌های شما و مقایسه آن با توزیع عادی است. هیستوگرام به شما امکان می دهد ببینید که آیا داده ها از یک منحنی زنگی شکل پیروی می کنند یا خیر، در حالی که نمودارهای Q-Q چندک های داده های شما را با چندک های یک توزیع نرمال مقایسه می کنند [4].

روش های بصری نقطه شروع خوبی هستند، اما می توانند ذهنی باشند و ممکن است برای مجموعه داده های کوچک قابل اعتماد نباشند.

2- روش توصیفی : در این روش چولگی و کشیدگی بررسی می شود. اگر تعداد افراد نمونه ی آماری بالاست پیشنهاد می شود در مقاله و پایان نامه ی خود از این روش استفاده کنید.

3- روش استنباطی آماری: این‌ها آزمون های رسمی‌تری هستند که از محاسبات آماری برای تعیین اینکه آیا داده‌های شما احتمالاً از توزیع نرمال آمده‌اند یا خیر، استفاده می‌کنند.

چندین تست نرمال بودن مختلف وجود دارد که هر کدام نقاط قوت و ضعف خاص خود را دارند. برخی از آزمون های رایج عبارتند از آزمون شاپیرو-ویلک، آزمون کولموگروف-اسمیرنوف و آزمون اندرسون-دارلینگ [2][6].

انتخاب آزمون به اندازه مجموعه داده شما و سایر عوامل بستگی دارد [3][5].

منابع:

از کدام آزمون استفاده کنیم:
آزمون Shapiro-Wilk: این ارزیابی می کند که آیا یک مجموعه داده از توزیع نرمال پیروی می کند [1، 2، 3، 4، 5، 6]. این یک مقدار p را برای نشان دادن احتمال غیرعادی بودن داده ها ارائه می دهد. مقادیر p کوچکتر (معمولاً 0.05 ≤) نشان دهنده رد نرمال بودن است.
این آزمون‌ها برای بررسی مفروضات سایر روش‌های آماری استفاده می‌شوند، نه مستقیماً بر روی خود داده‌های مقیاس لیکرت.

تست کولموگروف-اسمیرنوف (K-S): این یکی دیگر از تست های نرمال بودن است اما ممکن است قدرت کمتری نسبت به تست Shapiro-Wilk برای نمونه های کوچکتر داشته باشد [3].

کولموگروف-اسمیرنوف (K-S) برای داده های لیکرت و حجم نمونه بالای 30 نفر مناسب نیست و نتیجه گمراه کننده می دهد.بدین منظور پیشنهاد می شود از چولگی و کشیدگی استفاده کنید.
تست اندرسون-دارلینگ: این یک نوع تست K-S است که وزن بیشتری بر انحرافات در انتهای توزیع می‌گذارد [3].
انتخاب آزمون مناسب به عوامل مختلفی بستگی دارد، اما در این منابع شرایط خاصی برای هر آزمون ذکر نشده است. به طور کلی توصیه می شود که با یک آمارگیر مشورت کنید یا به منابع پیشرفته تر برای راهنمایی های عمیق مراجعه کنید.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *