بایگانی برچسب: s

تحلیل آماری - پژوهش - کیفی - کمی - کامپیوتر

روش ها و مراحل انتخاب صحیح آزمون آماری

آیا قصد دارید تحقیقی را انجام دهید؟ و یا اینکه در حال مطالعه یک تحقیق می باشید؟

چگونه میتوانید از صحت روش تجزیه و تحلیل داده ها اطمینان حاصل فرمائید؟ 

شاخه های مختلف علوم برای تجزیه و تحلیل داده ها از روش های مختلفی مانند روش های ذیل استفاده می نمایند:

الف) روش تحلیل محتوا

ب) روش تحلیل آماری

ج) روش تحلیل ریاضی

د) روش اقتصاد سنجی

ه) روش ارزشیابی اقتصادی

و) … 

تمرکز این نوشتار بر روش های تجزیه و تحلیل سیستمهای اقتصادی اجتماعی و بویژه روش های تحلیل آماری می باشد. 

آمار علم طبقه بندی اطلاعات، علم تصميم گيری های علمی و منطقی، علم برنامه ريزي های دقيق و علم توصيف و بيان آن چيزي است که از مشاهدات می توان فهميد. 

هدف ما آموزش درس آمار نیست زیرا اینگونه مطالب تخصصی را میتوان در مراجع مختلف یافت، هدف اصلی ما ارائه یک روش دستیابی سریع به بهترین روش آماری می باشد. 

يكي از مشكلات عمومی در تحقبقات ميداني انتخاب روش تحلیل آماري مناسب و یا به عبارتی انتخاب آزمون آماری مناسب براي بررسي سوالات يا فرضيات تحقيق مي باشد. 

در آزمون های آماری هدف تعیین این موضوع است که آیا داده های نمونه شواهد کافی برای رد یک حدس یا فرضیه را دارند یا خیر؟

انتخاب نادرست آزمون آماری موجب خدشه دار شدن نتایج تحقیق می شود. 

دکتر غلامرضا جندقی استاد یار دانشگاه تهران در مقاله ای كاربرد انواع آزمون هاي آماري را با توجه به نوع داده ها و وبژگي هاي نمونه آماري و نوع تحليل نشان داده است که در این بخش به نکات کلیدی آن اشاره می شود:

قبل از انتخاب یک آزمون آماری بایستی به سوالات زیر پاسخ داد:

1- چه تعداد متغیر مورد بررسی قرار می گیرد؟

2- چند گروه مفایسه می شوند؟

3- آیا توزیع ویژگی مورد بررسی در جامعه نرمال است؟

4- آیا گروه های مورد بررسی مستقل هستند؟

5- سوال یا فرضیه تحقیق چیست؟

6- آیا داده ها پیوسته، رتبه ای و یا مقوله ای Categorical هستند؟

قبل از ادامه این مبحث لازم است مفهوم چند واژه آماری را یاد آور شوم که زیاد وقت گیر نیست. 

1- جامعه آماری: به مجموعه كاملي از افراد يا اشياء يا اجزاء كه حداقل در يك صفت مورد علاقه مشترك باشند ،گفته می شود.

2- نمونه آماری: نمونه بخشي از يك جامعة آماری تحت بررسي است كه با روشي كه از پيش تعيين شده است انتخاب مي‌شود، به قسمي كه مي‌توان از اين بخش، استنباطهايي دربارة كل جامعه بدست آورد.

3- پارامتر و آماره: پارامتر يك ويژگي جامعه است در حالي كه آماره يك ويژگي نمونه است. براي مثال ميانگين جامعه يك پارامتر است. حال اگر از جامعه نمونه‌گيري كنيم و ميانگين نمونه را بدست آوريم، اين ميانگين يك آماره است.

4- برآورد و آزمون فرض: برآوردیابی و آزمون فرض دو روشی هستند که برای استنباط درمورد پارامترهای مجهول دو جمعیت به کار می روند.

5- متغير: ويژگي يا خاصيت يک فرد، شئ و يا موقعيت است که شامل يک سری از مقادير با دسته بنديهای متناسب است. قد، وزن، گروه خونی و جنس نمونه هايي از متغير هستند. انواع متغير می تواند کمی و کیفی باشد.

6- داده های کمی مانند قد، وزن يا سن درجه بندی مي شوند و به همين دليل قابل اندازه گيری می باشند. داده های کمی نیز خود به دو دسته دیگر تقسیم می شوند:

الف: داده های فاصله ای (Interval data)

ب: داده های نسبتی (Ratio data)

7- داده های فاصله ای: به عنوان مثال داده هایی که متغیر IQ (ضریب هوشی) را در پنج نفر توصیف می کنند عبارتند از: 80، 110، 75، 97 و 117، چون این داده ها عدد هستند پس داده های ما کمی اند اما می دانیم که  IQ نمی تواند صفر باشد و صفر در اینجا فقط مبنایی است تا سایر مقادیر  IQ در فاصله ای منظم از صفر و یکدیگر قرار گیرند پس این داده ها فاصله ای اند.

8- داده های نسبتی: داده های نسبتی داده هایی هستند که با عدد نوشته می شوند اما صفر آنها واقعی است. اکثریت داده های کمی این گونه اند و حقیقتاً دارای صفر هستند. به عنوان مثال داده هایی که متغیر طول پاره خط بر حسب سانتی متر را توصیف می کنند عبارتند از: 20، 15، 35، 8 و 23، چون این داده ها عدد هستند پس داده های ما کمی اند و چون صفر در اینجا واقعاً وجود دارد این داده نسبتی تلقی می شوند.

9- داده های کيفی مانند جنس، گروه خونی يا مليت فقط دارای نوع هستند و قابل بيان با استفاده از واحد خاصی نيستند. داده های کیفی خود به دو دسته دیگر تقسیم می شوند:

الف: داده های اسمی  (Nominal data)

ب: داده های رتبه ای  (Ordinal data)

10- داده های رتبه ای Ordinal: مانند کیفیت درسی یک دانش آموز (ضعیف، متوسط و قوی) و یا رتبه بندی هتل ها ( یک ستاره، دو ستاره و …)

11- داده های اسمی (nominal ) که مربوط به متغير يا خواص کيفی مانند جنس يا گروه خونی است و بيانگر عضويت در يک گروها category  خاص می باشد. (داده مقوله ای)

12- متغیر تصادفی گسسته و پیوسته: به عنوان مثال تعداد تصادفات جاده‌اي در روز يك متغير تصادفي گسسته است ولی انتخاب يك نقطه‌ به تصادف روي دايره‌اي به مركز مبدأ مختصات و شعاع 3 يك متغير تصادفي پيوسته است.

13- گروه: یک متغیر می تواند به لحاظ بررسی یک ویژگی خاص در یک گروه و یا دو و یا بیشتر مورد بررسی قرار گیرد. نکته 1: دو گروه می تواند وابسته و یا مستقل باشد. دو گروه وابسته است اگر ویژگی یک مجموعه افراد قبل و بعد از وقوع یک عامل سنجیده شود. مثلا میزان رضایت شغلی کارکنان قبل و بعد از پرداخت پاداش و همچنین اگر در مطالعات تجربی افراد از نظر برخی ویژگی ها در یک گروه با گروه دیگر همسان شود.

14- جامعه نرمال: جامعه ای است که از توزیع نرمال تبعیت می کند.

15- توزیع نرمال: یکی از مهمترین توزیع ها در نظریه احتمال است. و کاربردهای بسیاری در علوم دارد.

فرمول این توزیع بر حسب دو پارامتر امید ریاضی و واریانس بیان می شود. منحنی رفتار این تابع تا حد زیادی شبیه به زنگ های کلیسا می باشد. این منحنی دارای خواص بسیار جالبی است برای مثال نسبت به محور عمودی متقارن می باشد، نیمی از مساحت زیر منحنی بالای مقدار متوسط و نیمه دیگر در پایین مقدار متوسط قرار دارد و اینکه هرچه از طرفین به مرکز مختصات نزدیک می شویم احتمال وقوع بیشتر می شود.

سطح زیر منحنی نرمال برای مقادیر متفاوت مقدار میانگین و واریانس فراگیری این رفتار آنقدر زیاد است که دانشمندان اغلب برای مدل کردن متغیرهای تصادفی که با رفتار آنها آشنایی ندارند، از این تابع استفاده می کنند. به عنوان  مثال در یک امتحان درسی نمرات دانش آموزان اغلب اطراف میانگین بیشتر می باشد و هر چه به سمت نمرات بالا یا پایین پیش برویم تعداد افرادی که این نمرات را گرفته اند کمتر می شود. این رفتار را بسهولت می توان با یک توزیع نرمال مدل کرد.

اگر یک توزیع نرمال باشد مطابق قضیه چی بی شف 26.68 % مشاهدات در فاصله میانگین، مثبت و منفی یک انحراف معیار قرار دارد. و  44.95 % مشاهدات در فاصله میانگین، مثبت و منفی دو انحراف معیار قرار دارد. و 73.99 % مشاهدات در فاصله میانگین، مثبت و منفی سه انحراف معیار قرار دارد.

نکته 1: واضح است که داده های رتبه ای دارای توزیع نرمال نمی باشند.

نکته 2: وقتی داده ها کمی هستند و تعداد نمونه نیز کم است تشخیص نرمال بودن داده ها توسط آزمون کولموگروف – اسمیرنف مشکل خواهد شد.

 16- آزمون پارامتریک: آزمون هاي پارامتريک، آزمون هاي هستند که توان آماري بالا و قدرت پرداختن به داده  هاي جمع آوري شده در طرح  هاي پيچيده را دارند. در این آزمون ها داده ها توزيع نرمال دارند. (مانند آزمون تی).

17- آزمون هاي غيرپارامتري: آزمون هائی مي باشند که داده ها توزیع غیر نرمال داشته و در مقايسه با آزمون های پارامتري از توان تشخیصی کمتري برخوردارند.  (مانند آزمون من – ویتنی و آزمون کروسکال و والیس)

نکته3: اگر جامعه نرمال باشد از آزمون های پارامتریک و چنانچه غیر نرمال باشد از آزمون های غیر پارامتری استفاده می نمائیم.

نکته 4: اگر نمونه بزرگ باشد، طبق قضیه حد مرکزی جتی اگر جامعه نرمال نباشد می توان از آزمون های پارامتریک استفاده نمود.

حال به کمک جدول زیر براحتی می توانید یکی از 24 آزمون مورد نظر خود را انتخاب کنید:

هدفداده کمی و دارای توزیع نرمالداده رتبه ای و یا داده کمی غیر نرمالداده های کیفی اسمی
Categorical
توصیف یک گروهآزمون میانگین و انحراف معیارآزمون میانهآزمون نسبت
مقایسه یک گروه با یک مقدار فرضیآزمون یک نمونه ایآزمون ویلکاکسونآزمون خی – دو یا آزمون دو جمله ای
مقابسه دو گروه مستقلآزمون برای نمونه های مستقلآزمون من – ویتنیآزمون دقیق فیشر ( آزمون خی دو برای نمونه های بزرگ)
مقایسه دو گروه وابستهآزمون زوجیآزمون کروسکالآزمون مک – نار
مقایسه سه گروه یا بیشتر (مستقل)آزمون آنالیز واریانس یک راههآزمون والیسآزمون خی – دو
مقایسه سه گروه یا بیشتر (وابسته)آزمون آنالیز واریانس با اندازه های مکررآزمون فریدمنآزمون کوکران
اندازه همبستگی بین دو متغیرآزمون ضریب همبستگی پیرسونآزمون ضریب همبستگی اسپرمنآزمون ضریب توافق
پیش بینی یک متغیر بر اساس یک یا چند متغیرآزمون رگرسیون ساده یا غیر خطیآزمون رگرسیون نا پارامتریکآزمون رگرسیون لجستیک

در رویکردی دیگر بر مبنای تعداد متغیر، تعداد گروه و نرمال بودن جامعه نیز می توان به الگوریتم آزمون آماری مورد نظر دست یافت:

یک متغیر:

انتخاب آزمون آماری برای یک متغیریک متغیر در یک گروهیک متغیر در دو گروهیک متغیر در سه گروه یا بیشتر
متغیر نرمالآزمون میانگین و انحراف معیارآزمون تیآزمون آنالیز واریانس ANOVA
متغیر غیر نرمالآزمون نسبت (دو جمله ای)آزمون خی -دوآزمون ناپارامتریک

دو متغیر

انتخاب آزمون آماری برای دو متغیرهر دو متغیر پیوسته هستندیک متغیر پیوسته و دیگری گسسته استهر دو متغیر مقوله ای هستند
 آزمون همبستگیآزمون آنالیز واریانس ANOVAآزمون خی – دو

سه متغیر و بیشتر:

انتخاب آزمون آماری برای سه متغیر و بیشتریک گروهدو گروه و بیشتر
 آنالیز کواریانستحلیل ممیزی
 آنالیز واریانس با اندازه های مکررآنالیز واریانس چند متغیره
 تحلیل عاملیورگرسیون چند گانه 

قابل ذکر است قبل از ورود به الگوریتم انتخاب آزمون آماری بهتر است به سوالات زیر پاسخ دهیم:

1- آیا اختلافی بین میانگین (نسبت) یک ویژگی در دو یا چند گروه وجود دارد؟

2- آیا دو متغیر ارتباط دارند؟

3- چگونه می توان یک متغیر را با استفاده از متغیر های دیگر پیش بینی کرد؟

4- چه چیزی می توان با استفاده از نمونه در مورد جامعه گفت؟

پس از انتخاب آزمون آماری مناسب حال می توان با هر یک از آزمون ها به صورت تخصصی برخورد کرد: 

آزمون كي دو (خي دو يا مربع كاي) 

اين آزمون از نوع ناپارامتري است و براي ارزيابي همقوارگي متغيرهاي اسمي به كار مي‌رود. اين آزمون تنها راه حل موجود براي آزمون همقوارگي در مورد متغيرهاي مقياس اسمي با بيش از دو مقوله است، بنابراين كاربرد خيلي زيادتري نسبت به آزمونهاي ديگر دارد. اين آزمون نسبت به حجم نمونه حساس است.

آزمون  z  –  آزمون خطاي استاندارد ميانگين 

اين آزمون براي ارزيابي ميزان همقوارگي يا يكسان بودن و يكسان نبودن (Goodness of fit) ميانگين نمونه اي و ميانگين جامعه به كار مي رود. اين آزمون مواقعي به كار مي رود كه مي خواهيم بدانيم آيا ميانگين برآورد شده نمونه اي با ميانگين جامعه جور مي آيد يا نه.  اگر این تفاوت کم باشد، اين تفاوت معلول تغيير پذيري نمونه اي شناخته مي شود، ولي اگر زياد باشد نتيجه گرفته مي شود كه برآورد نمونه اي با پارامتر جامعه يكسان (همقواره) نيست.  اين آزمون پارامتري است يعني استفاده از آن مشروط به آن است كه دو پارامتر جامعه كه میانگین و انحراف معیار معلوم باشند. همچنين براي آزمون متغيرهاي پيوسته (مقياس فاصله اي) كاربرد دارد. تعداد نمونه بزرگتر  و يا مساوي 30  باشد و نيز توزيع متغير در جامعه نرمال باشد.

آزمون استيودنت t

اين آزمون براي ارزيابي ميزان همقوارگي يا يكسان بودن و نبودن ميانگين نمونه اي با ميانگين جامعه در حالتي به كار مي رود كه انحراف معيار جامعه مجهول باشد. چون توزيع t  در مورد نمونه هاي كوچك (کمتر از 30) با استفاده از درجات آزادي تعديل مي‌شود، مي‌توان از اين آزمون براي نمونه هاي بسيار كوچك استفاده نمود. همچنين اين آزمون مواقعي كه خطاي استاندارد جامعه نامعلوم و خطاي استاندارد نمونه معلوم باشد، كاربرد دارد.  

براي به كاربردن اين آزمون، متغير مورد مطالعه بايد در مقياس فاصله اي باشد، شكل توزيع آن نرمال و تعداد نمونه کمتر از 30 باشد.

آزمون t در حالتهاي زير كاربرد دارد:

– مقايسه يك عدد فرضي با ميانگين جامعه نمونه

– مقايسه ميانگين دو جامعه

– مقايسه يك نسبت فرضي با يك نسبتي كه از نمونه بدست آمده

– مقايسه دو نسبت از دو جامعه

آزمون F

اين آزمون تعميم يافته آزمون t است و براي ارزيابي يكسان بودن يا يكسان نبودن دو جامعه و يا چند جامعه به كار برده مي‌شود. در اين آزمون واريانس كل جامعه به عوامل اوليه آن تجزيه مي‌شود. به همين دليل به آن آزمون آناليز واريانس (ANOVA) نيز مي‌گويند. 

وقتي بخواهيم بجاي دو جامعه، همقوارگي چند جامعه را تواما با هم مقايسه نماييم از اين آزمون استفاده مي‌شود، چون مقايسه ميانگين هاي چند جامعه با آزمون t  بسيار مشكل است.  مقايسه ميانگين ها و همقوارگي چند جامعه بوسيله اين آزمون (F   يا ANOVA) راحت تر از آزمون t  امكان پذير است.   

آزمون كوكران 

آزمون كوكران تعميم يافته آزمون مك نمار است. اين آزمون براي مقايسه بيش از دو گروه كه وابسته باشند و مقياس آنها اسمي يا رتبه اي باشند به كار مي‌رود و همچون آزمون مك نمار، جوابها بايد دوتايي باشند. 

براي آزمون تغييرات يك نمونه در زمان ها و يا موقعيت هاي مختلف (مثل آراء راي دهندگان قبل از انتخابات در زمانهاي مختلف) به كار مي‌رود. مقياس مي‌تواند اسمي يا رتبه اي باشد. به جاي چند سوال مي‌توان يك سوال را در موقعيت هاي مختلف ارزيابي نمود. همه افراد بايد به همه سوالات پاسخ گفته باشند. چون پاسخ ها دو جوابي است، در بعضي از انواع تحقيقات ممكن است اطلاعات بدست آمده از دست برود و بهتر است از رتبه بندي استفاده كرد كه در اين صورت «آزمون ويلكاكسون» بهتر جوابگو خواهد بود. 

در صورت كوچك بودن نمونه ها آزمون كوكران مناسب نيست و بهتر است از «آزمون فريد من» استفاده شود.

آزمون فريدمن 

اين آزمون براي مقايسه چند گروه از نظر ميانگين رتبه هاي آنهاست و معلوم مي‌كند كه آيا اين گروه ها مي‌توانند از يك جامعه باشند يا نه؟

مقياس در اين آزمون بايد حداقل رتبه اي باشد. اين آزمون متناظر غير پارامتري آزمون F است و معمولا در مقياس هاي رتبه اي به جاي F به كار مي‌رود و جانشين آن مي‌شود (چون در F بايد همگني واريانس ها وجود داشته باشد كه در مقياسهاي رتبه اي كمتر رعايت مي‌شود). 

آزمون فريدمن براي تجريه واريانس دو طرفه (براي داده هاي غير پارامتري) از طريق رتبه بندي به كار مي‌رود و نيز براي مقايسه ميانگين رتبه بندي گروه هاي مختلف. تعداد افراد در نمونه ها بايد يكسان باشند كه اين از معايب اين آزمون است. نمونه ها بايد همگي جور شده باشند.

آزمون كالماگورف- اسميرانف 

اين آزمون از نوع ناپارامتري است و براي ارزيابي همقوارگي متغيرهاي رتبه اي در دو نمونه (مستقل و يا غير مستقل) و يا همقوارگي توزيع يك نمونه با توزيعي كه براي جامعه فرض شده است، به كار مي‌رود (اسميرانف يك نمونه اي). اين آزمون در مواردي به كار مي‌رود كه متغيرها رتبه اي باشند و توزيع متغير رتبه اي را در جامعه بتوان مشخص نمود. اين آزمون از طريق مقايسه توزيع فراواني هاي نسبي مشاهده شده در نمونه  با توزيع فراواني هاي نسبي جامعه  انجام مي‌گيرد. اين آزمون ناپارامتري است و بدون توزيع است اما بايد توزيع متغير در جامعه براي هر يك از رتبه هاي مقياس رتبه اي در جامعه بطور نسبي در نظر گرفته شود كه آنرا نسبت مورد انتظار مي نامند.

آزمون كالماگورف- اسميرانف دو نمونه اي Two- Sample Kalmogorov- Smiranov Test 

اين آزمون در مواقعي به كار مي‌رود كه دو نمونه داشته باشيم (با شرايط مربوط به اين آزمون كه قبلا گفته شد) و بخواهيم همقوارگي بين آن دو نمونه را با هم مقايسه كنيم.

آزمون كروسكال- واليس

اين آزمون متناظر غير پارامتري آزمون F  است و همچون آزمون F ، موقعي به كار برده مي‌شود كه تعداد گروه ها بيش از 2 باشد. مقياس اندازه گيري در كروسكال واليس حداقل بايد ترتيبي باشد.

اين آزمون براي مقايسه ميانگين هاي بيش از 2 نمونه رتبه اي (و يا فاصله اي) بكار مي‌رود. فرضيات در اين آزمون بدون جهت است يعني فقط تفاوت را نشان مي‌دهد و جهت بزرگتر يا كوچكتر بودن گروه ها را از نظر ميانگين هايشان نشان نمي دهد. كارايي اين آزمون 95 درصد آزمون F است.

آزمون مك نمار

اين آزمون از آزمونهاي ناپارامتري است كه براي ارزيابي همانندي دو نمونه وابسته بر حسب  متغير دو جوابي استفاده مي‌شود. متغيرها مي‌توانند داراي مقياس هاي اسمي و يا رتبه اي باشند. اين آزمون در طرح هاي ماقبل و مابعد مي‌تواند مورد استفاده قرار گيرد (يك نمونه در دو موقعيت مختلف). اين آزمون مخصوصا براي سنجش ميزان تاثير عملكرد تدابير به كار مي‌رود.

ويژگي ها: اگر متغيرها اسمي باشند، اين آزمون بي بديل است اما اگر رتبه اي باشد مي‌توان از آزمون t نيز استفاده كرد (در صورت وجود شرايط آزمون t) ، و يا آزمون ويلكاكسون استفاده نمود. از عيوب اين آزمون اين است كه جهت و اندازه تغييرات را محاسبه نمي‌كند و فقط وجود تغييرات را در نمونه ها در نظر مي‌گيرد.  

آزمون ميانه

اين آزمون همتاي ناپارامتري آزمون هاي t – Z – F  است و وقتي دو يا چند گروه از ميان دو يا چند جامعه مستقل با توزيع هاي يكسان انتخاب شده اند به كار برده مي‌شود. در اين آزمون مقياس اندازه گيري ترتيبي است و بين داده ها نبايد همرتبه وجود داشته باشد. اين آزمون، هم براي گروه هاي مستقل و هم وابسته كاربرد دارد و لزومي ندارد كه حتما حجم گروه هاي نمونه با يكديگر برابر باشند.

آزمون تك نمونه اي دورها 

اين آزمون مواقعي به كار مي‌رود كه توالي مقادير متغيرها را بخواهيم آزمون نماييم كه آيا تصادفي بوده و يا نه. در واقع آزمون كي دو و يا آزمون هاي ديگر كه در آنها توالي متغيرها بي اهميت است، در اين آزمون مهم و اصل انگاشته مي‌شود. به عبارت ديگر، براي اينكه بتوانيم در يك نمونه كه در آن رويدادهاي مختلف از طرف فرد و يا واحد آماري رخ داده است، آزمون نماييم كه آيا اين رويدادها تصادفي است يا نه، به كار برده مي‌شود. هيچ آزمون ديگري همچون اين آزمون نمي تواند توالي را مورد نظر قرار دهد. بنابراين براي اين منظور منحصر به فرد مي‌باشد.

آزمون علامت

اين آزمون از انواع آزمونهاي غير پارامتري است و هنگامي به كار برده مي‌شود كه نمونه هاي جفت، مورد نظر باشد (مثل زن و شوهر و يا خانه هاي فرد و زوج و . . . ). زيرا در اين آزمون يافته‌ها به صورت جفت جفت بررسي مي‌شوند و اندازه مقادير در آن بي اثر است و فقط علامت مثبت و منفي و يا در واقع جهت پاسخ ها و يا بيشتر و كمتر بودن پاسخ هاي جفت‌هاي گروه مورد تحقيق (نمونه آماري) در نظر گرفته مي‌شود. 

هنگامي كه ارزشيابي متغير مورد مطالعه با روشهاي عادي قابل اندازه گيري نباشد و قضاوت در مورد نمونه هاي آماري (كه به صورت جفت ها هستند) فقط با علامت بيشتر (+) و كمتر (-) مورد نظر باشد ، از اين آزمون مي‌توان استفاده كرد. شكل توزيع مي‌تواند نرمال و يا غير نرمال باشد و يا از يك جامعه و يا دو جامعه باشند (مستقل و يا وابسته). توزيع بايد پيوسته باشد. اين آزمون فقط تفاوت هاي زوجها را مورد بررسي قرار مي‌دهد و در صورت مساوي بودن نظرات هر زوج (مشابه بودن) آنها را از آزمون حذف مي‌كند. چون مقادير در اين آزمون نقشي ندارند، شدت و ضعف و اندازه بيشتر يا كمتر بودن نظرات پاسخگويان (جفت ها) در اين آزمون بي اثر است و در واقع نقص اين آزمون حساب مي‌شود.

آزمون تي هتلينگ (T)

آزمون T هتلينگ تعميم يافته t استيودنت است. در آزمون t يك نمونه اي، ميانگين يك صفت از يك نمونه، با يك عدد فرضي كه ميانگين آن صفت از جامعه فرض مي‌شد، مورد مقايسه قرار مي‌گرفت، اما در T  هتلينگ K متغير (صفت) از آن جامعه (نمونه هاي جامعه) با k  عدد فرضي، مورد مقايسه قرار مي‌گيرند. در واقع اين آزمون از نوع آزمونهاي چند متغيره است كه همقوارگي (Goodness of fit) را بين صفت هاي مختلف از جامعه بدست مي‌دهد. در T  هتلينگ دو نمونه اي نيز همچون T استيودنت دو نمونه اي، مقايسه دو نمونه است اما در اين آزمون K صفت از يك جامعه (نمونه) با K صفت از جامعه ديگر (نمونه ديگر) مورد مقايسه قرار مي‌گيرد.  

آزمون مان وايتني U  

هر گاه دو نمونه مستقل از جامعه اي مفروض باشد و متغيرهاي آنها به صورت ترتيبي باشند، از اين آزمون استفاده مي‌شود. اين آزمون مشابه t استيودنت با دو نمونه مستقل است و آزمون ناپارامتري آن محسوب مي‌شود. 

هرگاه شرايط استفاده از آزمونهاي پارامتري در متغيرها موجود نباشد، يعني متغيرها پيوسته و نرمال نباشند از اين آزمون استفاده مي‌شود. دو نمونه بايد مستقل بوده و هر دو كوچكتر از 10 مورد باشند. در صورت بزرگتر بودن از 10 مورد بايد از آماره هاي ‌‌Z  استفاده كرد (در محاسبات كامپيوتري، تبديل به Z  به طور خودكار انجام مي‌شود). در اين آزمون شكل توزيع، پيش فرضي ندارد يعني مي‌تواند نرمال و يا غير نرمال باشد.  

آزمون ويلكاكسون  

اين آزمون از آزمونهاي ناپارامتري است كه براي ارزيابي همانندي دو نمونه وابسته با مقياس رتبه اي به كار مي‌رود. همچون آزمون مك نمار، اين آزمون نيز مناسب طرح هاي ماقبل و مابعد است (يك نمونه در دو موقعيت مختلف)، و يا دو نمونه كه از يك جامعه باشند. اين آزمون اندازه تفاوت ميان رتبه ها را در نظر مي‌گيرد بنابراين متغيرها مي‌توانند داراي جوابهاي متفاوت و يا فاصله اي باشند. اين آزمون متناظر با آزمون t دو نمونه اي وابسته است و در صورت وجود نداشتن شرايط آزمون t جانشين خوبي براي آن است. نمونه هاي به كار برده شده در اين آزمون بايد نسبت به ساير صفت هايشان جور شده (جفت شده) باشند.   

آزمون لون Levene

آزمون لون همگنی واریانس ها را در نمونه های متفاوت بررسی می نماید. به عبارتی فرض تساوی متغیر وابسته را برای گروه هائی که توسط عامل رسته ای تعیین شده اند، آزمون می کند و نسبت به اکثر آزمونها کمتر به فرض نرمال بودن وابسته بوده و در واقع به انحراف نرمال مقاوم است.

این آزمون به منظور بررسی برابری واریانس جمعیت آماری در نمونه‌های مختلف انجام می‌شود. فرض صفر در اینجا این است که واریانس‌ها همگن هستند، یعنی واریانس جمعیت‌ها با یکدیگر برابر هستند. اگر مقدار P-VALUE در اماره لون کمتر از 0.05 باشد، تفاوت بدست آمده در واریانس نمونه به‌طور بعید اتفاق افتاده است و بنابراین فرض صفر که برابری واریانس‌هاست رد می‌شود و نتیجه می‌گیریم که بین واریانس‌ها در نمونه تفاوت وجود دارد.

برگرفته از وبلاگ : آقای منوچهری

انجام پژوهش کیفی - تحلیل آماری - پژوهش - کیفی - کمی - کامپیوتر

آموزش کامل نرم افزار انویو Nvivo فصل 1- قسمت سوم: پنجره های تخصصی

آموزش کامل نرم افزار انویو Nvivo فصل 1- قسمت سوم: پنجره های تخصصی

در این بخش با پنجره های تخصص نرم افزار Nvivo آشنا می شوید. این بخش مواردی مانند : 3-1- آشنایی با پنجره های تخصصی نرم‌افزار –  نمای هدایت گر (Navigation view)  دسترسی سریع (Quick Access) –  دیتا (Data) – کدها (codes) –  روابط (Relationships) –  نمونه‌ها (Cases) – ‌نوتز (Notes)  – جستجو (Search) –  نقشه (Maps) –  خروجی (Outputs) –  نمای فهرست (List view) –  نمای جزئیات (Detail view)  سفارشی کردن و تنظیمات نرم‌افزار)} آموزش می دهد.


برای دسترسی به کاملترین پکیج آموزشی نرم افزار انویوو Nvivo به زبانی فارسی روی لینک زیر کلیک نمایید.

لینک مشاهده و دانلود پکیچ

انجام پژوهش کیفی
انجام پژوهش کیفی.jpg
تحلیل داده های آماری
تحلیل های کمی با نرم افزار های : SPSS – Amos – Pls تحلیل های کیفی با نرم افزار های : Maxqda – NVivo

انجام پژوهش کیفی - تحلیل آماری - پژوهش - کیفی - کمی - کامپیوتر

تحلیل داده های کیفی  با MAXQDA2020  , NVivo

داده های کیفی داده هایی  اند که عدد و رقمی درآن ها وجود ندارد و هرچه هست کلمات و جملات، گفتارها، اسناد، تصاویر، نوشته ها، متون، نمادها و داد هایی از این قبیل است.

تحلیل داده های آماری
پایان نامه – مقاله نویسی

برای جمع آوری داده های کیفی از ابزارهایی مانند مصاحبه ( عمیق و نیمه عمیق یا ساختار یافته و نیمه ساختار یافته) ، مصاحبه گروه های کانونی، پرسشنامه های گسترده پاسخ ، متون خطی و غیر خطی، صوت، فیلم استفاده می شود.

مقاله نویسی

جهت تحلیل محتوای کیفی نمی توان  از ابزارهای کمی مانند SPSS; pls & Amos  استفاده کرده بلکه  باید از نرم افزارهای تحلیل داده های کیفی  مانند NvivoT Atlas & Maxqda  استفاده کرد.

علی الخصوص که امروزه استفاده از روشهای پژوهش ترکیبی یا آمیخته (Mixed Methods) یا به عبارتی دیگر روش پژوهش کیفی و کمی در جامعه پژوهشی کشور در حال رواج است لزوم استفاده از این نرم افزارها نمود بیشتری پیدا کرده است.

تحلیل داده های آماری
تحلیل های کمی با نرم افزار های : SPSS – Amos – Pls تحلیل های کیفی با نرم افزار های : Maxqda – NVivo

تحلیل مصاحبه ها و پرسشنامه با نرم افزارهای MAXQDA2020  ، NVivo

ما  تحلیل داده های کیفی  شما را با کیفیتعالی و قیمت مناسب  و بنابرنظر شما و استاد راهنمای محترم تحلیل می کنیم.

همچنین در زمینه های زیر می توانید از ما مشاوره بگیرید:


طراحی و تدوین سوالات مصاحبه ها و پرسشنامه گسترده پاسخ

پیاده سازی فایل صوتی مصاحبه ها با نرم افزار MAXQDA2020  ، نرم افزار Nvivo

كدگذاري اوليه و ثانويه مصاحبه با نرم افزار MAXQDA2020  ، نرم افزار Nvivo

تحلیل داده های اکتشافی و شناسایی مولفه ها از طریق مصاحبه نیمه ساختار یافته و عمیق؛
مقوله بندی و تفسیر یافته های بدست آمده از مصاحبه ها با نرم افزار MAXQDA2020  ، نرم افزار Nvivo

پایان نامه نویسی مقاله نویسی
پایان نامه نویسی مقاله نویسی


گزارش یافته های تحلیل مصاحبه با نرم افزار MAXQDA2020  ، نرم افزار Nvivo

استفاده از روشهای تحليل كمي، ساختاري و تفسيري داده های مصاحبه توسط متخصصین با نرم افزارهای ایموس Amos، Smart PLS، SPSS

تحلیل ساختاري متن نوشتاري، بر حسب تعداد واژه‌ها، اصطلاحات و مفاهيم و ميزان تكرار آنها شمارش با نرم افزار MAXQDA2020  ، نرم افزار Nvivo

تحلیل داده های آماری

تفاوت پارامتر و آماره

پارامتر و آماره

پارامتر و آماره (Parameter & Statistics)، برای تخمین یک مقدار مجهول استفاده می شوند، پارامتر مقدار مجهول جامعه و آماره مقدار مجهول نمونه را مشخص می کند.

هدف تحقیق کمی، درک ویژگی های جمعیتها از طریق یافتن پارامترها است. در عمل، جمع‌آوری داده‌ها از هر یک از اعضای یک جمعیت اغلب بسیار دشوار، زمان‌بر یا غیرممکن است. در عوض، داده ها از نمونه ها جمع آوری می شود.

با آمار استنباطی، می‌توانیم از آمار نمونه‌ای برای حدس‌های آموزشی در مورد پارامترهای جمعیت استفاده کنیم.

ویژگی پارامتر و آماره

پارامتر و آماره ها اعدادی هستند که هر ویژگی قابل اندازه گیری یک نمونه یا یک جامعه را خلاصه می کنند. برای متغیرهای طبقه بندی شده (به عنوان مثال، وابستگی سیاسی)، رایج ترین آمار یا پارامتر یک نسبت است. برای متغیرهای عددی (به عنوان مثال، ارتفاع)، آمار توصیفی مانند میانگین یا انحراف استاندارد معمولاً آماره یا پارامترهای گزارش شده هستند.

در گزارش های خبری و تحقیقاتی، همیشه مشخص نیست که یک عدد یک پارامتر است یا یک آماره. برای اینکه بفهمید با کدام نوع شماره سروکار دارید، موارد زیر را از خود بپرسید:
آیا این عدد یک جمعیت کامل و کامل را توصیف می کند که می توان برای جمع آوری داده به هر عضو دسترسی داشت؟
آیا می توان در یک بازه زمانی معقول اطلاعات مربوط به این ویژگی را از هر یک از اعضای جمعیت جمع آوری کرد؟
اگر پاسخ هر دو سوال مثبت است، احتمالاً عدد یک پارامتر است. برای جمعیت های کوچک براساس نمونه گیری، داده ها را می توان از کل جمعیت جمع آوری کرد و در پارامترها خلاصه کرد.
اگر پاسخ به هر یک از سؤالات منفی باشد، احتمالاً این عدد یک آماره است. نمونه‌گیری برای جمع‌آوری داده‌ها از جمعیت‌های بزرگ و تعمیم آمار به جامعه گسترده‌تر به روشی معتبر خارجی استفاده می‌شود.

به خاطر سپردن پارامتر و آماره آسان است! هر دو مقادیر خلاصه ای هستند که یک گروه را توصیف می کنند، و یک دستگاه یادگاری مفید برای به خاطر سپردن این که هر گروه کدام گروه را توصیف می کند وجود دارد. فقط روی حرف اول آنها تمرکز کنید:

پارامتر = جمعیت
آماره = نمونه
جمعیت کل گروهی از افراد، اشیاء، حیوانات، معاملات و غیره است که شما در حال مطالعه آنها هستید. نمونه بخشی از جامعه است.

تفاوت جمعیت و نمونه

در تحقیق، یک جمعیت کل گروهی است که شما علاقه مند به مطالعه آن هستید. این ممکن است گروهی از افراد باشد (به عنوان مثال، همه بزرگسالان در ایالات متحده یا همه کارکنان یک شرکت)، اما می‌تواند به معنای گروهی باشد که شامل انواع دیگری از عناصر است: اشیا، رویدادها، سازمان‌ها، کشورها، گونه‌ها، ارگانیسم‌ها و غیره.
نمونه، گروه کوچکتری است که از جامعه گرفته شده است. نمونه گروهی از عناصر است که شما در واقع از آنها داده ها را جمع آوری خواهید کرد

محاسبه پارامتر و آماره

محققان معمولا بیشتر به درک پارامترهای جمعیت علاقه مند هستند. به هر حال، درک خواص یک نمونه نسبتا کوچک به خودی خود ارزشمند نیست. به عنوان مثال، دانشمندان به تأثیر متوسط یک داروی جدید فقط بر تعداد کمی از افراد اهمیت نمی دهند، که یک آمار نمونه است. در عوض، آنها می‌خواهند تأثیر میانگین آن را در کل جمعیت، یک پارامتر، درک کنند.
متأسفانه، اندازه گیری کل جمعیت برای محاسبه دقیق پارامتر آن معمولاً غیرممکن است زیرا آنها بسیار بزرگ هستند. بنابراین، ما در استفاده از نمونه ها و آمار آنها گیر کرده ایم. خوشبختانه با آمار استنباطی، تحلیلگران می توانند از آمار نمونه برای تخمین پارامترهای جمعیت استفاده کنند که به پیشرفت علم کمک می کند.
به طور کلی در بررسی پارامتر و آماره، استفاده از آماره نمونه برای تخمین پارامتر جمعیت، فرآیندی است که با استفاده از روش نمونه گیری شروع می شود که تمایل به تولید نمونه های معرف دارد – نمونه ای با ویژگی های مشابه جامعه. دانشمندان اغلب از نمونه گیری تصادفی استفاده می کنند. سپس تحلیلگران می‌توانند از تحلیل‌های آماری مختلفی که خطای نمونه‌گیری را محاسبه می‌کنند برای تخمین پارامتر جمعیت استفاده کنند. این فرآیند به استنتاج آماری معروف است.

با استفاده از آمار استنباطی، می توانید پارامترهای جمعیت را از آماره نمونه تخمین بزنید. برای تخمین های بی طرفانه، نمونه شما در حالت ایده آل باید نماینده جمعیت شما باشد و/یا به طور تصادفی انتخاب شود.
دو نوع تخمین مهم وجود دارد که می توانید در مورد پارامتر جمعیت انجام دهید: تخمین نقطه ای و تخمین فاصله.
تخمین نقطه ای یک تخمین مقدار واحد از یک پارامتر بر اساس یک آمار است. به عنوان مثال، میانگین نمونه، تخمین نقطه ای از میانگین جمعیت است.
تخمین بازه ای محدوده ای از مقادیر را به شما می دهد که انتظار می رود پارامتر در آن قرار داشته باشد. فاصله اطمینان رایج ترین نوع تخمین فاصله است.
هر دو نوع تخمین برای جمع آوری یک ایده واضح از جایی که یک پارامتر احتمالاً در آن قرار دارد، مهم هستند.

مثال برآورد پارامتر و آماره

مثال مرتبط در تخمین پارامتر و آماره این است: در مطالعه خود در مورد حمایت از مجازات اعدام در میان ساکنان ایالات متحده، متوجه می شوید که ۶۱٪ از شرکت کنندگان در نمونه شما از مجازات اعدام حمایت می کنند. برای تخمین پارامتر جمعیت، یک تخمین نقطه ای و یک تخمین فاصله ای را از آمار نمونه خود محاسبه می کنید.
تخمین امتیاز شما آماره نمونه شماست – شما تخمین می زنید که ۶۱ درصد از تمام ساکنان ایالات متحده از مجازات اعدام حمایت می کنند.

برای یافتن تخمین بازه، یک بازه اطمینان ۹۵% ایجاد می‌کنید که به شما می‌گوید انتظار می‌رود پارامتر جمعیت در بیشتر مواقع در کجا قرار داشته باشد. با نمونه گیری تصادفی، احتمال ۰.۹۵ وجود دارد که پارامتر جمعیتی واقعی برای حمایت از مجازات اعدام در میان ساکنان ایالات متحده بین ۵۷٪ تا ۶۵٪ است.

پارامتر و آماره

انجام پژوهش کیفی
انجام پژوهش کیفی.jpg

منبع

www.scribbr.com/statistics

تحلیل داده های آماری

نقطه برش(Cut-off point)

نقطه برش(Cut-off point)

نقطه برش (Cut-off point)، مشخص کردن حد امتیازی براساس یک آزمون است که افراد جامعه را به طبقات مختلف تقسیم می کند.

روش تعیین نقطه برش در اقتصاد، کارایی سرمایه گذاری و روش های بهینه سازی آموزشی مورد استفاده قرار می گیرد.

نقطه برش باید بر اساس یک متدولوژی مورد قبول عموم بوده و منعکس کننده قضاوت افراد با کفایت و واجد شرایط باشد.

تغییر نقاط برش با مقادیر متفاوتی برای حساسیت و ویژگی همراه است، به معنای مبادله: حساسیت‌های بالاتر با ویژگی‌های کمتر مرتبط هستند و بالعکس. این مبادله در شکل زیر به وضوح قابل مشاهده است.

محاسبه نقطه برش
محاسبه نقطه برش

نقطه برش سطح معناداری

در آمار، اگر می‌خواهید در مورد یک فرضیه صفر H0 (رد یا شکست در رد) بر اساس مقدار p نتیجه بگیرید، باید یک نقطه برش از پیش تعیین‌شده را تعیین کنید که در آن فقط مقادیر p کوچکتر یا مساوی با مقدار قطع می‌شوند. منجر به رد H0 می شود.در حالی که ۰.۰۵ یک نقطه برش بسیار محبوب برای رد H0 است، نقاط برش و تصمیم‌گیری‌های حاصل می‌تواند متفاوت باشد – برخی افراد از برش‌های سخت‌گیرانه‌تری مانند ۰.۰۱ استفاده می‌کنند، که قبل از رد H0 به شواهد بیشتری نیاز دارند، و برخی دیگر ممکن است برش‌های سخت‌گیری کمتری مانند ۰.۱۰ داشته باشند. شواهد کمتر اگر H0 رد شود (یعنی p-value کمتر یا مساوی با سطح معنی‌داری از پیش تعیین‌شده باشد)، محقق می‌تواند بگوید که نتیجه آماری معنی‌داری پیدا کرده است. یک نتیجه از نظر آماری معنادار است اگر خیلی بعید باشد که به طور تصادفی با فرض H0 درست باشد. اگر نتیجه آماری معنی‌داری دریافت کردید، شواهد کافی برای رد ادعای H0 دارید و نتیجه می‌گیرید که چیزی متفاوت یا جدید در کار است (یعنی Ha).

پایان نامه نویسی مقاله نویسی
پایان نامه نویسی مقاله نویسی

محاسبه نقطه برش پرسشنامه

در تحلیل های کمی آماری، از پرسشنامه استفاده می شود. روایی با شاخص های CVI و CVR محاسبه می شود و پایایی با آلفای کرونباخ. نقطه برش نیز براساس طیف پرسشنامه یک مقدار استاندارد دارد. به عنوان مثال عدد ۳ به عنوان میانگین طیف لیکرت ۵ تایی. اما براساس شرایط و اهداف تحقیق و دقت مدنظر نقطه برش تغییر می کند. کاتآف پوینت در تحلیل دلفی فازی عدد ۰.۷ به صورت توافقی انتخاب شده است.

زمانی که به بررسی یک جامعه پرداخته می شود گام اول بررسی نرمالیتی توزیع متغیرها در جامعه است. در حالت نرمال، براساس آمار توصیفی میانگین، میانه یا مد می توان نقطه برش را تشخیص داد. اما با غیرنرمال بودن جامعه، چندک ها، صدک ها و دیگر شاخص های آماری به عنوان نقطه برش تشخیص داده می شود.

به طور کلی براساس انحراف معیار (فاصله اعداد جامعه از میانگین) می توان به بررسی نقاط برش و تغییر آنها پرداخت. تعداد اعضای جامعه، مقدار صدک مدنظر و انحراف استاندارد می تواند با سطح ۹۵% نقاط برش جامعه را تشخیص دهد. به منظور محاسبه آنلاین نقاط برش بر روی لینک زیر کلیک کنید.

تحلیل داده های آماری
تحلیل های کمی با نرم افزار های : SPSS – Amos – Pls تحلیل های کیفی با نرم افزار های : Maxqda – NVivo

برگرفته از: www.sciencedirect.com

انجام پژوهش کیفی - تحلیل آماری - پژوهش - کیفی - کمی - کامپیوتر

انجام تحلیل کیفی با نرم افزارهای مکس کیو دی ای و انویوو Maxqda & Nvivo

انجام تحلیل کیفی با نرم افزارهای مکس کیو دی ای و انویوو Maxqda & Nvivo

تحقیق کیفی روشی است برای درک عمیق‌تر از هر آنچه که در حال تحقیق درباره  آن هستید.

این روش به شما درک درستی از وقایع، داده‌های مربوط به گروه‌های انسانی یا اجتماعی و الگوهای گسترده در پشت پدیده‌ای که در حال تحقیق درباره آن هستید، می‌دهد.

انجام تحلیل کیفی با نرم افزارهای مکس کیو دی ای و انویوو Maxqda & Nvivo

تحلیل داده های کیفی

انجام پژوهش کیفی
انجام پژوهش کیفی.jpg

داده‌های کیفی، کیفیت‌ها یا ویژگی‌ها را توصیف می‌کنند.

تمایل به جمع‌آوری آن با استفاده از پرسشنامه، مصاحبه و مشاهده است. داده‌های کیفی می‌تواند به صورت کلمات توصیفی باشد که (گاهی اوقات از طریق استفاده از کدگذاری) برای الگوها یا معانی مورد بررسی قرار گیرد.

کدگذاری به محقق این امکان را می‌دهد تا داده‌های کیفی را برای شناسایی مضامین متناسب با سوالات تحقیق و انجام تجزیه و تحلیل کمی طبقه‌بندی کند. با این حال، کدگذاری در تحقیقات کیفی ضرورتی ندارد.

فرایند اصلی تحلیل در روی آورد نظریه پایه کد گذاری آزاد در اطلاعات است.

نوعی طبقه بندی که به طبقه های مختلف به طور استقرایی اجازه ظهور می دهد. این طبقه ها از قبل نمی توانند تثبیت شوند و همچنین مانند مقوله های روزمره زندگی، مانع الجمع نیستند.

بدین شکل که یک واحد معنایی خاص ممکن است در تعدادی مقوله یا سازه مختلف قرار داده شود.

ویژگی های روشهای تحقیق کیفی

  1. روش های تحقیق کیفی معمولاً داده ها را در دیدگاه جمع می کنند ، جایی که شرکت کنندگان مشکلی را تجربه می کنند. این داده ها در زمان واقعی هستند و بندرت شرکت کنندگان را برای جمع آوری اطلاعات از مناطق جغرافیایی خارج می کنند.
  2. محققان کیفی معمولاً بجای تکیه بر یک منبع داده واحد ، چندین شکل داده مانند مصاحبه ، مشاهدات و اسناد را جمع می کنند.
  3. این نوع روش تحقیق به دنبال حل مسائل پیچیده با تجزیه به استنتاج های معنی دار است ، که به راحتی توسط همه قابل خواندن و درک است.

۴. از آنجا که این یک روش ارتباطی تر است ، مردم می توانند اعتماد خود را به محقق ببندند و اطلاعات بدست آمده به دست آمده خام و غیر قابل کنترل است.

ما داده های کیفی شما (مصاحبه ، پرسشنامه گسترده پاسخ و …) را با نرم افزارهای مکس کیو دی ای( Maxqda) و انویوو ( Nvivo) با بهترین کیفیت و مناسب ترین قیمت تحلیل می کنیم.

کافی است با یکی از روش های زیر با ما در تماس باشید:

برای سفارش کافی است به شماره 09143444846 ( ایتا، تلگرام واتساپ) یا به ایمیل abazizi1392@gmail.com پیام بفرستید.

انجام پژوهش کیفی - تحلیل آماری - پژوهش - کیفی - کمی - کامپیوتر

کدگذاری در روش گراندد تئوری

در روش گراندد تئوری (نظریه داده‌بنیاد) از سه روش کدگذاری باز محوری و انتخابی استفاده می‌شود.

کد گذاری باز: اشتراوس و کوربین کد گذاری باز را اینگونه توصیف می‌کنند “بخشی از تحلیل که مشخصاً به نامگذاری و دسته‌بندی پدیده از طریق بررسی دقیق داده‌ها مربوط می‌شود”. به عبارت بهتر در این نوع کدگذاری مفاهیم درون مصاحبه‌ها و اسناد و مدارک بر اساس ارتباط با موضوعات مشابه طبقه بندی می‌شوند.

کدگذاری محوری: هدف از کدگذاری محوری ایجاد رابطه بین مقوله‌های تولید شده (در مرحله کدگذاری باز) است. این عمل معمولا بر اساس الگوی پاردایمی انجام می‌شود و به نظریه پرداز کمک می‌کند تا فرایند نظریه پردازی را به سهولت انجام دهد. اساس ارتباط دهی در کدگذاری محوری بر بسط و گسترش یکی از مقوله‌ها قرار دارد. دسته بندی اصلی (مانند ایده یا رویداد محوری) بعنوان پدیده تعریف می‌شود و سایر دسته بندی‌ها با این دسته‌بندی اصلی مرتبط می‌شوند. شرایط علّی موارد و رویدادهایی هستند که منجر به ایجاد و توسعه پدیده می‌گردند.

کدگذاری انتخابی: کدگذاری انتخابی عبارت است از فرآیند انتخاب دسته بندی اصلی، مرتبط کردن نظام‌مند آن با دیگر دسته بندی ها، تأیید اعتبار این روابط، و تکمیل دسته بندی هایی که نیاز به اصلاح و توسعه بیشتری دارند. کدگذاری انتخابی بر اساس نتایج کدگذاری باز و کدگذاری محوری، مرحله اصلی نظریه پردازی است. به این ترتیب که مقوله محوری را به شکل نظام‌مند به دیگر مقوله‌ها ربط داده و آن روابط را در چارچوب یک روایت ارائه کرده و مقوله هایی را که به بهبود و توسعه بیشتری نیاز دارند، اصلاح می‌کند. دانشجویان دوره دکتری مدیریت آموزش تحلیل کیفی را جدی بگیرید.

انجام پژوهش کیفی - تحلیل آماری - پژوهش - کیفی - کمی - کامپیوتر

کد گذاری با روش اترید-استرلینگ

روش اترید-استرلینگ

روش پیشنهادی اترید-استرلینگ Attride-Stirling یکی از روش‌های مرسوم کدگذاری در تحلیل مضمون است. این روش مبتنی بر تشکیل شبکه مضامین Thematic Network است و در پژوهش‌های مختلف مورد استفاده قرار می‌گیرد. شبکه مضامین شامل سه دسته از کدها و مفاهیم است:

  • مضامین پایه Basic Themes
  • مضامین سازمان‌دهنده Organizing Themes
  • مضامین فراگیر Global Themes
انجام پژوهش کیفی
انجام پژوهش کیفی

مضامین پایه شامل کدها و نکات کلیدی متن است. با مطالعه کامل متن باید خردترین کدها شناسایی و به عنوان یک مضمون پایه انتخاب شود. مضامین سازمان‌دهنده شامل مضامین حاصل از ترکیب و تلخیص مضامین پایه است. کدهای پایه باید مرور و مفاهیم مشابه در کنار هم قرار گیرند. پژوهشگر با توجه به توان تشخیص و تسلط خود باید نام مناسبی برای هر دسته کد انتخاب کند. در نهایت مضامین فراگیر شامل مضامین عالی دربرگیرنده حاکم بر متن به مثابه کل است.

تحلیل داده های آماری

نرم افزار لیزرل و انجام مدلسازی معادلات ساختاری با آن

نرم افزار لیزرل و انجام مدلسازی معادلات ساختاری با آن

1- مدل معادلات ساختاری چیست؟

مدل يابي معادلات ساختاري (Structural equation modeling: SEM) يک تکنيک تحليل چند متغيري بسيار کلي و نيرومند از خانواده رگرسيون چند متغيري و به بيان دقيق‌تر بسط “مدل خطي کلي” (General linear model) یا GLM است. SEM به پژوهشگر امکان مي‌دهد مجموعه اي از معادلات رگرسيون را به صورت هم زمان مورد آزمون قرار دهد.

مدل يابي معادله ساختاري يک رويکرد جامع براي آزمون فرضيه‌هايي درباره روابط متغيرهاي مشاهده شده و مکنون است که گاه تحليل ساختاري کوواريانس، مدل يابي علّي و گاه نيز ليزرل (Lisrel) ناميده شده است اما اصطلاح غالب در اين روزها، مدل يابي معادله ساختاري يا به گونه خلاصه SEM است. (هومن 1384،11)

از نظر آذر (1381) نيز يکي از قوي‌ترين و مناسب‌ترين روش‌هاي تجزيه و تحليل در تحقيقات علوم رفتاري و اجتماعي، تجزيه و تحليل چند متغيره است زيرا اين گونه موضوعات چند متغيره بوده و نمي توان آنها را با شيوه دو متغيري (که هر بار يک متغير مستقل با يک متغير وابسته در نظر گرفته مي‌شود) حل نمود.

«تجزيه و تحليل ساختارهاي کوواريانس» يا همان «مدل يابي معادلات ساختاري»، يکي از اصلي‌ترين روش‌هاي تجزيه و تحليل ساختار داده‌هاي پيچيده و يکي از روش‌هاي نو براي بررسي روابط علت و معلولي است و به معني تجزيه و تحليل متغيرهاي مختلفي است که در يک ساختار مبتني بر تئوري، تاثيرات همزمان متغيرها را به هم نشان مي‌دهد. از طريق اين روش مي‌توان قابل قبول بودن مدل‌هاي نظري را در جامعه‌هاي خاص با استفاده از داده‌هاي همبستگي، غير آزمايشي و آزمايشي آزمود.

2- انديشه اساسي و زيربنايی مدل يابي ساختاري

يکي از مفاهيم اساسي که در آمار کاربردي در سطح متوسط وجود دارد اثر انتقالهاي جمع پذير و ضرب پذير در فهرستي از اعداد است. يعني اگر هر يک از اعداد يک فهرست در مقدار ثابت K ضرب شود ميانگين اعداد در همان K ضرب مي‌شود و به اين ترتيب، انحراف معيار استاندارد در مقدار قدر مطلق  K  ضرب خواهد شد.

نکته اين است که اگر مجموعه اي از اعداد X با مجموعه ديگري از اعداد Y از طريق معادله Y=4X   مرتبط باشند در اين صورت واريانس Y بايد 16 برابر واريانس X باشد و بنابراين از طريق مقايسه واريانس‌هاي X و Y مي‌توانيد به گونه غير مستقيم اين فرضيه را که Y و X از طريق معادله Y=4X با هم مرتبط هستند را بيازماييد.

اين انديشه از طريق تعدادي معادلات خطي از راه‌هاي مختلف به چندين متغير مرتبط با هم تعميم داده مي‌شود. هرچند قواعد آن پيچيده‌تر و محاسبات دشوارتر مي‌شود، اما پيام کلي ثابت مي‌ماند. يعني با بررسي واريانسها و کوواريانسهاي متغيرها مي‌توانيد اين فرضيه را که “متغيرها از طريق مجموعه اي از روابط خطي با هم مرتبط اند” را بيازماييد.

توسعه مدل‌هاي علّي و همگرايي روش‌هاي اقتصادسنجي، روان سنجي و غیره

توسعه مدل‌هاي علّي متغيرهاي مکنون معرف همگرايي سنتهاي پژوهشي نسبتا مستقل در روان سنجي، اقتصادسنجي، زيست شناسي و بسياري از روشهاي قبلا آشناست که آنها را به شکل چهارچوبي وسيع در مي‌آورد. مفاهيم متغيرهاي مکنون (Latent variables)  در مقابل متغيرهاي مشاهده شده (Observed variables)  و خطا در متغيرها، تاريخي طولاني دارد.

در اقتصادسنجي آثار جهت دار هم زمان چند متغير بر متغيرهاي ديگر، تحت برچسب مدلهاي معادله همزمان بسيار مورد مطالعه قرار گرفته است. در روان سنجي به عنوان تحليل عاملي و تئوري اعتبار توسعه يافته و شالوده اساسي بسياري از پژوهش‌هاي اندازه گيري در روانسنجي مي‌باشد. در زيست شناسي، يک سنت مشابه همواره با مدلهاي معادلات همزمان (گاه با متغيرهاي مکنون) در زمينه نمايش و طرح برآورده در تحليل مسير سر و کار دارد.

3- موارد کاربرد روش ليزرل

روش ليزرل ضمن آنکه ضرايب مجهول مجموعه معادلات ساختاري خطي را برآورد مي‌کند براي برازش مدلهايي که شامل متغيرهاي مکنون، خطاهاي اندازه گيري در هر يک از متغيرهاي وابسته و مستقل، عليت دو سويه، هم زماني و وابستگي متقابل مي‌باشد طرح ريزي گرديده است.

اما اين روش را مي‌توان به عنوان موارد خاصي براي روشهاي تحليل عاملي تاييدي، تحليل رگرسيون چند متغيري، تحليل مسير، مدلهاي اقتصادي خاص داده‌هاي وابسته به زمان، مدلهاي برگشت پذير و برگشت ناپذير براي داده‌هاي مقطعي/ طولي، مدلهاي ساختاري کوواريانس و تحليل چند نمونه اي (مانند آزمون فرضيه‌هاي برابري ماتريس کوواريانس هاي، برابري ماتريس همبستگي ها، برابري معادلات و ساختارهاي عاملي و غيره) نيز به کار برد.

4- نرم افزار ليزرل چیست؟

ليزرل يک محصول نرم افزاري است که به منظور برآورد و آزمون مدلهاي معادلات ساختاري طراحي و از سوي “شرکت بين المللي نرم افزار علمي”

Scientific software international  (www.ssicentral.com)

به بازار عرضه شده است. اين نرم افزار با استفاده از همبستگي و کوواريانس اندازه گيري شده، مي‌تواند مقادير بارهاي عاملي، واريانسها و خطاهاي متغيرهاي مکنون را برآورد يا استنباط کند و از آن مي‌توان براي اجراي تحليل عاملي اکتشافي، تحليل عاملي مرتبه دوم، تحليل عاملي تاييدي و همچنين تحليل مسير (مدل يابي علت و معلولي با متغيرهاي مکنون) استفاده کرد.

تحلیل ساختاری کوواریانس که به آن روابط خطی ساختاری نیز می گویند، یکی از تکنیک های تحلیل مدل معادلات ساختاری است. جالب است بدانید که نام LISREL از عبارت

Linear Structural Relations 

که به معنای روابط خطی ساختاری است، بدست آمده است.

5- تحليل عاملي اکتشافي (efa) و تحليل عاملي تاييدي (cfa)

تحليل عاملي مي‌تواند دو صورت اکتشافي و تاييدي داشته باشد. اينکه کدام يک از اين دو روش بايد در تحليل عاملي به کار رود مبتني بر هدف تحليل داده هاست.

تحليل عاملی اکتشافي

در تحليل عاملی اکتشافي(Exploratory factor analysis) پژوهشگر به دنبال بررسي داده‌هاي تجربي به منظور کشف و شناسايي شاخص‌ها و نيز روابط بين آنهاست و اين کار را بدون تحميل هر گونه مدل معيني انجام مي‌دهد. به بيان ديگر تحليل عاملی اکتشافي علاوه بر آنکه ارزش تجسسي يا پيشنهادي دارد مي‌تواند ساختارساز، مدل ساز يا فرضيه ساز باشد.

تحليل اکتشافي وقتي به کار مي‌رود که پژوهشگر شواهد کافي قبلي و پيش تجربي براي تشکيل فرضيه درباره تعداد عامل‌هاي زيربنايي داده‌ها نداشته و به واقع مايل باشد درباره تعيين تعداد يا ماهيت عامل‌هايي که همپراشي بين متغيرها را توجيه مي‌کنند داده‌ها را بکاود. بنابر اين تحليل عاملی اکتشافي بيشتر به عنوان يک روش تدوين و توليد تئوري و نه يک روش آزمون تئوري در نظر گرفته مي‌شود.

تحليل عاملي اکتشافي روشي است که اغلب براي کشف و اندازه گيري منابع مکنون پراش و همپراش در اندازه گيري‌هاي مشاهده شده به کار مي‌رود. پژوهشگران به اين واقعيت پي برده اند که تحليل عاملي اکتشافي مي‌تواند در مراحل اوليه تجربه يا پرورش تستها کاملا مفيد باشد. توانشهاي ذهني نخستين ترستون، ساختار هوش گيلفورد نمونه‌هاي خوبي براي اين مطلب مي‌باشد. اما هر چه دانش بيشتري درباره طبيعت اندازه گيري‌هاي رواني و اجتماعي به دست آيد ممکن است کمتر به عنوان يک ابزار مفيد به کار رود و حتي ممکن است بازدارنده نيز باشد.

از سوي ديگر بيشتر مطالعات ممکن است تا حدي هم اکتشافي و هم تاييدي باشند زيرا شامل متغير معلوم و تعدادي متغير مجهول‌اند. متغيرهاي معلوم را بايد با دقت زيادي انتخاب کرد تا حتي الامکان درباره متغيرهاي نامعلومي که استخراج مي‌شود اطلاعات بيشتري فراهم‌ايد. مطلوب آن است که فرضيه اي که از طريق روش‌هاي تحليل اکتشافي تدوين مي‌شود از طريق قرار گرفتن در معرض روش‌هاي آماري دقيق‌تر تاييد يا رد شود. تحليل عاملی اکتشافي نيازمند نمونه‌هايي با حجم بسيار زياد مي‌باشد.

تحليل عاملي تاييدي

در تحليل عاملي تاييدي (Confirmatory factor analysis) ، پژوهشگر به دنبال تهيه مدلي است که فرض مي‌شود داده‌هاي تجربي را بر پايه چند پارامتر نسبتا اندک، توصيف تبيين يا توجيه مي‌کند. اين مدل مبتني بر اطلاعات پيش تجربي درباره ساختار داده هاست که مي‌تواند به شکل:

1) يک تئوري يا فرضيه

2) يک طرح طبقه بندي کننده معين براي گويه‌ها يا پاره تستها در انطباق با ويژگي‌هاي عيني شکل و محتوا

3)شرايط معلوم تجربي

و يا    4) دانش حاصل از مطالعات قبلي درباره داده‌هاي وسيع باشد.

تمايز مهم روش‌هاي تحليل اکتشافي و تاييدي در اين است که روش اکتشافي با صرفه‌ترين روش تبيين واريانس مشترک زيربنايي يک ماتريس همبستگي را مشخص مي‌کند. در حالي که روش‌هاي تاييدي (آزمون فرضيه) تعيين مي‌کنند که داده‌ها با يک ساختار عاملي معين (که در فرضيه آمده) هماهنگ اند يا نه.

ضمنا خاطر نشان می شود برای دریافت ویدئوی آموزشی تحلیل عاملی تاییدی در نرم افزار لیزرل می توانید به این صفحه مراجعه نمایید:

درود بر شما کاربر محترم و بزرگوار، به عرض می رساند امروزه هزینه های نگهداری و ارتقای سایت بالا می باشد، لذا جهت ادامه فعالیت مجبور شدیم در بعضی از جاها تبلیغ بگذاریم. لطفاً با کلیک بر روی لینک های زیر از ما حمایت کنید تا بتوانیم خدمات بهتری ارائه دهیم. مطمئن باشد هیچ مشکلی برای شما پیش نخواهد آمد. با تشکر. ،

6- آزمون‌هاي برازندگي مدل کلي

با آنکه انواع گوناگون آزمون‌ها که به گونه کلي شاخص‌هاي برازندگي(Fitting indexes) ناميده مي‌شوند پيوسته در حال مقايسه، توسعه و تکامل مي‌باشند اما هنوز درباره حتي يک آزمون بهينه نيز توافق همگاني وجود ندارد. نتيجه آن است که مقاله‌هاي مختلف، شاخص‌هاي مختلفي را ارائه کرده اند و حتي نگارش‌هاي مشهور برنامه‌هاي SEM مانند نرم افزارهاي lisrel, Amos, EQS نيز تعداد زيادي از شاخص‌هاي برازندگي به دست مي‌دهند.(هومن1384 ،235)

اين شاخص‌ها به شيوه‌هاي مختلفي طبقه بندي شده اند که يکي از عمده‌ترين آنها طبقه بندي به صورت مطلق، نسبي و تعديل يافته مي‌باشد. برخي از اين شاخص ها عبارتند از:

1-6- شاخص‌هاي  GFI و  AGFI

شاخص GFI – Goodness of fit index  مقدار نسبي واريانس‌ها و کوواريانس‌ها را به گونه مشترک از طريق مدل ارزيابي مي‌کند. دامنه تغييرات GFI بين صفر و يک مي‌باشد. مقدار GFI بايد برابر يا بزرگتر از  0.09  باشد.

شاخص برازندگي ديگر Adjusted Goodness of Fit Index – AGFI    يا همان مقدار تعديل يافته شاخص GFI براي درجه آزادي مي‌باشد. اين مشخصه معادل با کاربرد ميانگين مجذورات به جاي مجموع مجذورات در صورت و مخرج (1- GFI) است. مقدار اين شاخص نيز بين صفر و يک مي‌باشد. شاخص‌هاي GFI  و  AGFI  را که جارزکاگ و سوربوم (1989) پيشنهاد کرده اند بستگي به حجم نمونه ندارد.

2-6- شاخص RMSEA

اين شاخص , ريشه ميانگين مجذورات تقريب مي‌باشد.

شاخص Root Mean Square Error of Approximation – RMSEA براي مدل‌هاي خوب برابر 0.05 يا کمتر است. مدلهايي که RMSEA  آنها 0.1 باشد برازش ضعيفي دارند.

3-6- مجذور کاي

آزمون مجذور كاي (خي دو) اين فرضيه را مدل مورد نظر هماهنگ با الگوي همپراشي بين متغيرهاي مشاهده شده است را مي‌آزمايد، کميت خي دو بسيار به حجم نمونه وابسته مي‌باشد و نمونه بزرگ کميت خي دو را بيش از آنچه که بتوان آن را به غلط بودن مدل نسبت داد, افزايش مي‌دهد. (هومن.1384. 422).

4-6- شاخص  NFI و CFI

شاخصNFI (که شاخص بنتلر-بونت هم ناميده مي‌شود) براي مقادير بالاي 0.09  قابل قبول و نشانه برازندگي مدل است. شاخص CFI  بزرگتر از 0.09  قابل قبول و نشانه برازندگي مدل است. اين شاخص از طريق مقايسه يک مدل به اصطلاح مستقل که در آن بين متغيرها هيچ رابطه اي نيست با مدل پيشنهادي مورد نظر، مقدار بهبود را نيز مي‌آزمايد. شاخص CFI  از لحاظ معنا مانند NFI  است با اين تفاوت که براي حجم گروه نمونه جريمه مي‌دهد.

شاخص‌هاي ديگري نيز در خروجي نرم افزار ليزرل ديده مي‌شوند که برخي مثل AIC,  CAIC  ECVA  براي تعيين برازنده‌ترين مدل از ميان چند مدل مورد توجه قرار مي‌گيرند.

براي مثال مدلي که داراي کوچکترين AIC ,CAIC ,ECVA باشد برازنده‌تر است.(هومن1384 ،244-235) برخي از شاخص‌ها نيز به شدت وابسته به حجم نمونه اند و در حجم نمونه‌هاي بالا مي‌توانند معنا داشته باشند.

برگرفته از سایت اطمینان شرق

بنيان های مدل سازي معادله ساختاري

بنيان های مدل سازي معادله ساختاري

در این مقاله در خصوص الگوهای معادله ساختاری، تدوین مدل، تشخیص مدل، برآورد مدل، آزمون مدل و اصلاح مدل معادلات ساختاری گفتگو می کنیم.

 تحلیل آماری

الگوهای معادله ساختاری

الگوهای معادله ساختاری، مجموعه هایی از معادلات خطی هستند که برای تعیین یک پدیده برحسب متغیرهای علت و معلول از پیش فرض شده به کار می روند. کلی ترین شکل این الگوها امکان اندازه گیری متغیرهایی که نمی توانند مستقیماً اندازه گیری شوند را فراهم می کند. الگوهای معادله ساختاری به ویژه در علوم اجتماعی و رفتاری مفیدند و برای مطالعه رابطه بین وضعیت های اجتماعی و حصول آن ها، تصمیم های مربوط به قابلیت سوددهی شرکت ها، کارایی برنامه های رفتار اجتماعی و دیگر مکانیسم ها مورد استفاده قرار می گیرد.

تدوین مدل

قبل از هر نوع جمع آوری داده و تحلیل، پژوهشگر بایستی مدلی را تدوین نماید که به نظر می رسد مقادیر واریانس- کواریانس آن را تأیید نمایند. به بیان دیگر تدوین مدل تصمیم در این باره است که کدام متغیرها در مدل نظری قرار گیرند و این که این متغیرها چگونه با هم در ارتباط هستند.

یک مدل هنگامی به خوبی تدوین شده است که مدل واقعی جامعه با مدل نظری فرض شده سازگار باشد. به عبارت دیگر ماتریس کواریانس نمونه ای S به طور بسنده ای بوسیله مدل نظری تحت آزمون بازتولید شود. بنابراین هدف تحقق مدلی است که نزدیکترین برازش را با ساختار کواریانس مدل دارا باشد. مثال ساده ای را با دو متغیر X و Y در نظر بگیرید. ما براساس پژوهش قبلی می دانیم که این دو متغیر با یکدیگر ارتباط دارند. اما چرا؟ کدام ارتباط نظری بیانگر این رابطه است؟ آیا X بر Y اثر می گذارد یا عکس این حالت برقرار می باشد و یا متغیر سومی به نام Z بر هردوی آن ها اثر می گذارد. گاه ممکن است با در نظر مدل اولیه نامناسب باعث شویم یک پارامتر با اهمیت از مدل حذف شود (مثلا غفلت کردن از وجود رابطه X و Y) و یا این که یک متغیر مهم را از مدل حذف نماییم. علاوه بر این ممکن است یک پارامتر یا متغیر نامناسب در مدل وارد شوند که سبب ایجاد اریبی در برآورد پارامترها شده و نوعی خطا را در تدوین مدل بوجود می آورد.

تشخیص مدل

در مدل سازی معادلات ساختاری حل مسئله تشخیص مدل پیش از برآورد پارامترها بسیار با اهمیت است. در تشخیص مدل این سؤال مطرح می شود که : آیا براساس داده های نمونه ای موجود در ماتریس کواریانس نمونه ای S   و مدل نظری تعریف شده بوسیله ماتریس کواریانس جامعه ∑ می توان مجموعه ی منحصر به فردی از برآورد پارامترها یافت؟

پیش از توضیح در مورد تشخیص مدل، توضیحاتی را در مورد پارامترهای مدل ارائه می دهیم .هر پارامتر در مدل باید به عنوان یک پارامتر آزاد، ثابت یا مقید مشخص شود. یک پارامتر آزاد پارامتری است که شناخته شده نیست و نیازمند برآورد است. پارامتر ثابت، پارامتری است که آزاد نیست اما برای آن یک مقدار مشخص(به طور معمول مقدار صفر یا 1) تعریف شده است. یک پارامتر مقید نیز پارامتری است که مشخص نیست اما برابر با یک یا تعداد بیشتری پارامتر است.

تشخیص مدل در واقع به طرح پارامترها به عنوان ثابت، آزاد یا مقید بستگی دارد. پس از آن که مدل و پارامترها تدوین شدند، این پارامترها برای برای شکل دادن به یک و تنها یک ∑  با یکدیگر ترکیب می شوند. اگر دو یا تعداد بیشتری از مجموعه پارامترها ماتریس ∑  یکسانی را تولید کنند، انگاه این مجموعه ها معادل یا همتا خوانده می شوند.

بر این اساس سه سطح برای تشخیص مدل وجود دارد:

1- یک مدل فرومشخص است اگر یک یا تعداد بیشتری از متغیرها نتوانند به طور یکتایی مشخص شوند زیرا اطلاعات کافی در ماتریس S وجود ندارد.

2- یک مدل کاملا مشخص است اگر همه پارامترها به دلیل وجود اطلاعات کافی در ماتریس S به طور منحصر به فردی تعیین شوند..

3- یک مدل فرامشخص است هنگامی که بیش از یک جواب برای یک یا چند پارامتر وجود دارد.

اگر مدل فرومشخص باشد برآورد پارامترها قابل اعتماد نبوده و در چنین حالتی درجات آزادی مدل صفر یا منفی است. این مدل ممکن است با افزودن قیدهایی مشخص شود. مدل های کاملا مشخص و فرامشخص برای برآورد پارامترها مناسب هستند.

برآورد مدل

گام بعدی بدست آوردن برآوردهایی برای هریک از پارامترهای تعیین شده در مدل است که ماتریس نظری  ∑  را تولید می کنند. برآورد پارامترها باید به گونه ای باشد که نزدیک ترین ماتریس به ماتریس واریانس کواریانس نمونه ای بازتولید شود و خطا یعنی  ∑-S  حداقل شود.

برخی از روش های اولیه برای این منظور شامل حداقل مربعات غیروزنی، حداقل مربعات معمول، حداقل مربعات تعمیم یافته و روش حداکثر درستنمایی است. از میان این روش ها تنها روش حداقل مربعات غیروزنی وابسته به مقیاس است.

آزمون مدل

پس از آنکه برآورد پارامترها برای یک مدل تدوین شده و مشخص بدست آمدند، محقق باید تعیين کند که داده ها تا چه حد با مدل برازش دارند؟

دو شیوه برای برسی برازش مدل وجود دارد : ابتدا ملاحظه برخی آزمون های عمومیت یافته برای برازش کل مدل است و شیوه دوم بررسی برازش پارامترهای منفرد در هریک از اجزای مدل است. آزمو های کلی با عنوان معیارهای برازش مدل شناخته می شوند. بسیاری از این شاخص ها برمبنای مقایسه ماتریس کواریانس اقتباس شده از مدل ∑  با ماتریس کواریانس نمونه ای S ساخته شده اند.

برای بررسی برازش پارامترهای منفرد سه آزمون اصلی مورد استفاده قرار می گیرند:

  • اول آنکه آیا یک پارامتر آزاد به طور معناداری با صفر تفاوت دارد یا خیر؟
  • دوم آنکه آیا علامت پاارمتر با آنچه به لحاظ نظری مورد انتظار بوده هماهنگ است؟
  • و سوم اینکه برآورد پارامترها باید در دامنه مقادیر مورد انتظار قرارگیرند.

هریک از این سؤالات با کمک روش ها و آزمون های آماری مناسب پاسخ داده می شوند.

اصلاح مدل

اگر برازش یک مدل نظری به قوتی که انتظار داشتیم نبود آنگاه گام بعدی اصلاح مدل و ارزیابی مدل اصلاح شده می باشد. فرآیند نمایان سازی خطاهای تدوین مدل به نحوی که مدل های جایگزین تدوین شده به طور مناسب تری ارزیابی شوند ، «جستجوی تدوین» نامیده می شود. هدف از یک جستجوی تدوین تعویض مدل اصلی با مدلی است که در برخی جهات دارای برازش بهتری بوده و پارامترهایی را برآورد می کند که به لحاظ آماری معنادار و به لحاظ نظری دارای معنا و مفهوم باشند.

بررسی ماتریس باقیمانده ها، ملاحظه معناداری آماری پارامترهای مدل و همچنین استفاده از مضرب لاگرانژ و آماره والد از جمله روش های مورد استفاده برای این منظور هستند.

منبع : مقدمه ای بر مدل سازی معادله ساختاری ، نوشته رندال. ای. شوماخر و ریچارد ای لومکس /  ترجمه شده توسط دکتر وحید قاسمی/ انتشارات جامعه شناسان.

برگرفته از سایت اطمینان شرق