بایگانی دسته: روش تحقیق

انجام پژوهش کیفی - تحلیل آماری - پژوهش - کیفی - کمی - کامپیوتر

کدگذاری در روش گراندد تئوری

در روش گراندد تئوری (نظریه داده‌بنیاد) از سه روش کدگذاری باز محوری و انتخابی استفاده می‌شود.

کد گذاری باز: اشتراوس و کوربین کد گذاری باز را اینگونه توصیف می‌کنند “بخشی از تحلیل که مشخصاً به نامگذاری و دسته‌بندی پدیده از طریق بررسی دقیق داده‌ها مربوط می‌شود”. به عبارت بهتر در این نوع کدگذاری مفاهیم درون مصاحبه‌ها و اسناد و مدارک بر اساس ارتباط با موضوعات مشابه طبقه بندی می‌شوند.

کدگذاری محوری: هدف از کدگذاری محوری ایجاد رابطه بین مقوله‌های تولید شده (در مرحله کدگذاری باز) است. این عمل معمولا بر اساس الگوی پاردایمی انجام می‌شود و به نظریه پرداز کمک می‌کند تا فرایند نظریه پردازی را به سهولت انجام دهد. اساس ارتباط دهی در کدگذاری محوری بر بسط و گسترش یکی از مقوله‌ها قرار دارد. دسته بندی اصلی (مانند ایده یا رویداد محوری) بعنوان پدیده تعریف می‌شود و سایر دسته بندی‌ها با این دسته‌بندی اصلی مرتبط می‌شوند. شرایط علّی موارد و رویدادهایی هستند که منجر به ایجاد و توسعه پدیده می‌گردند.

کدگذاری انتخابی: کدگذاری انتخابی عبارت است از فرآیند انتخاب دسته بندی اصلی، مرتبط کردن نظام‌مند آن با دیگر دسته بندی ها، تأیید اعتبار این روابط، و تکمیل دسته بندی هایی که نیاز به اصلاح و توسعه بیشتری دارند. کدگذاری انتخابی بر اساس نتایج کدگذاری باز و کدگذاری محوری، مرحله اصلی نظریه پردازی است. به این ترتیب که مقوله محوری را به شکل نظام‌مند به دیگر مقوله‌ها ربط داده و آن روابط را در چارچوب یک روایت ارائه کرده و مقوله هایی را که به بهبود و توسعه بیشتری نیاز دارند، اصلاح می‌کند. دانشجویان دوره دکتری مدیریت آموزش تحلیل کیفی را جدی بگیرید.

انجام پژوهش کیفی - تحلیل آماری - پژوهش - کیفی - کمی - کامپیوتر

کد گذاری با روش اترید-استرلینگ

روش اترید-استرلینگ

روش پیشنهادی اترید-استرلینگ Attride-Stirling یکی از روش‌های مرسوم کدگذاری در تحلیل مضمون است. این روش مبتنی بر تشکیل شبکه مضامین Thematic Network است و در پژوهش‌های مختلف مورد استفاده قرار می‌گیرد. شبکه مضامین شامل سه دسته از کدها و مفاهیم است:

  • مضامین پایه Basic Themes
  • مضامین سازمان‌دهنده Organizing Themes
  • مضامین فراگیر Global Themes
انجام پژوهش کیفی
انجام پژوهش کیفی

مضامین پایه شامل کدها و نکات کلیدی متن است. با مطالعه کامل متن باید خردترین کدها شناسایی و به عنوان یک مضمون پایه انتخاب شود. مضامین سازمان‌دهنده شامل مضامین حاصل از ترکیب و تلخیص مضامین پایه است. کدهای پایه باید مرور و مفاهیم مشابه در کنار هم قرار گیرند. پژوهشگر با توجه به توان تشخیص و تسلط خود باید نام مناسبی برای هر دسته کد انتخاب کند. در نهایت مضامین فراگیر شامل مضامین عالی دربرگیرنده حاکم بر متن به مثابه کل است.

تحلیل داده های آماری

گراندد تئوری (نظریه داده بنیاد)

گراندد تئوری (نظریه داده بنیاد)

گراندد تئوری (Grounded Theory) یا نظریه داده بنیاد یک روش تحقیق کیفی است که برای نظریه‌پردازی پیرامون پدیده مورد مطالعه استفاده می‌شود. این روش زمانی استفاده می‌شود که ادبیات پژوهش پیرامون موضوع از غنای لازم برخوردار نباشد. همچنین هدف ارائه یک نظریه جدید است که تاکنون در جوامع پژوهشی مطرح نشده است.

این روش توسط دو جامعه شناس به نام بارنی گلیسر (Barney Glaser) و آنسلم اشتراوس (Anselm Strauss) در سال ۱۹۶۷ میلادی معرفی شد. روش اصلی گردآوری داده‌ها در این روش استفاده از انواع مصاحبه است. با تحلیل و کدگذاری متن مصاحبه‌ها به ارائه مدل پارادایمی پرداخته می‌شود. در روش گراندد تئوری با استفاده از یک دسته داده‌ها، نظریه‌ای تکوین می‌یابد. به طوری که این نظریه در یک سطح وسیع، یک فرایند، عمل یا تعامل را تبیین می‌کند. بیشتر پژوهشگران از روش اشتراوس و کوربین برای انجام تحلیل گراندد تئوری استفاده می‌کنند.

نظریه حاصل از اجرای چنین روش پژوهشی، نظریه‌ای فراگردی است. از مزایای روش گراندد تئوری این است که:

  • تئوری به شکل منظم و بر اساس داده‌های واقعی شکل می‌گیرد.
  • برای موقعیتی مناسب است که دانش ما در مورد آن محدود است و تئوری قابل اعتنا در آن موجود نیست که بتوان بر اساس آن فرضیه‌ای برای آزمون تدوین کرد.
  • گراندد تئوری در طول تحقیق رشد می‌کند و از رهگذر تعامل مستمر بین گردآوری و تحلیل داده‌ها حاصل می‌شود.

فلسفه روش گراندد تئوری

فلسفه علمی روش گراندد تئوری براساس نظریه کنش متقابل نماید یا symbolic interactionism قرار دارد. به عبارت دیکر نظریه گراندد تئوری در پارادایم تفسیری تعامل‌گرایی سمبولیک ریشه دارد. در تعامل‌گرایی سمبولیک اعتقاد بر این است که مردم مبنای اینکه چگونه سمبول‌های خاص مانند پوشش‌، عبارات کلامی و غیرکلامی را معنی و تفسیر می‌نمایند، رفتار کرده و با یکدیگر تعامل دارند. عناصر کلیدی روش گراندد تئوری شامل نمونه‌گیری نظری، مقایسه ثابت، کدگذاری باز، محوری و انتخابی، یادآوری و اشباع نظری، توسط اشتراوس و کوربین توصیف شده است.

امروزه ۳ رهیافت مسلط در نظریه­ پردازی زمینه بنیان قابل تفکیک است:

رهیافت اشتراوس، کوربین و چارمز

رهیافت اشتراوس، کوربین و چارمز

رهیافت نظام­‌مند Systematic که با اثر اشتراوس و کوربین (Strauss and Corbin, 1998) شناخته می­‌شود.

رهـیافت ظاهرشونده Emergent که مربوط به اثر گلیسر (Glaser, 1992) است.

رهیافت ساخت­‌گرایانه Constructivist که توسط چارمز (Charmaz, 1990; 2000) حمایت می­‌شود.

نظریه­ داده بنیاد یکی از استراتژی‌­های پژوهش محسوب می‌­شود که از طریق آن نظریه‌­پردازی بر مبنای مفاهیم اصلی حاصل از داده­‌های موجود در زمینه، شکل می‌گیرد. این­گونه نظریه­ پردازی مبتنی بر استعاره کولاژ و همانند مدل سطل زباله تصمیم­‌گیری می‌­باشد که از تلاقی تصادفی اجزاء و البته با هنرنمایی نظریه­ پرداز ترکیبی نو، بدیع و جذاب خلق می‌­شود. به عبارت دیگر، نظریه­‌پرداز زمینه‌­بنیان در زمینی متشکل از داده­‌های پراکنده متعدد و متنوع سیر نموده و به منظور دستیابی به نظری‌ه­ای نو با هنرنمایی آن­ها را ترکیب می‌­نماید. خلاقیت یکی از اجزای مهم نظریه­‌پردازی زمینه­‌بنیان است. رویه­‌های این روش پژوهشگر را مجبور می­‌سازد که پیش‌­فرض­‌ها را درهم شکسته و از عناصر قدیمی نظمی نو بیافریند.

مدل‌های گراندد تئوری

مدل‌های گراندد تئوری

استراتژی روش گراندد تئوری

استراتژی نظریه­ داده بنیاد زمینه­ بنیان از نوعی رویکرد استقرایی بهره می‌­گیرد. یعنی روند شکل­‌گیری نظریه در این استراتژی حرکت از جزء به کل است. این روش یک سلسله رویه­‌های سیستماتیک را به کار می­‌گیرد تا نظریه‌­ای مبتنی بر استقرا درباره پدیده­ مورد نظر ایجاد کند. یافته‌های تحقیق دربرگیرنده تنظیم نظری واقعیت تحت بررسی است نه یک سلسله ارقام یا مجموعه‌­ای از مطالب که به یکدیگر وصل شده باشند.

هدف نظریه­ پردازی زمینه­ بنیان ساختن و پرداختن نظریه‌­ای است که در زمینه مورد مطالعه صادق و روشنگر باشد. این استراتژی پژوهش بر سه عنصر: مفاهیم، مقوله‌­ها و گزاره­‌ها استوار است.

مراحل نظریه داده بنیاد (گراندد تئوری)

مراحل نظریه داده بنیاد (گراندد تئوری)

در پژوهش نظریه­ پردازی زمینه‌­بنیان، نظریه مورد نظر یک نظریه فراگردی است. اگر چه نظریه­پردازان زمینه­بنیان ممکن است یک تک ایده مثلاً مهارت­‌های رهبری را هم مورد تحقیق قرار دهند ولی آن­ها اغلب یک فراگرد را بررسی می­‌کنند. زیرا درک جهان اجتماعی مستلزم این است که افراد با یکدیگر تعامل داشته باشند. در نظریه‌­پردازی زمینه­‌بنیان، یک فراگرد، زنجیره­ای از کنش‌­ها و واکنش­‌ها بین افراد و وقایع مربوط به یک موضوع است.

داده‌هایی که توسط نظریه­‌پرداز زمینه‌­بنیان برای تشریح فراگردها گردآوری می­‌شود شامل انواع مختلفی از داده­‌های کیفی است نظیر مشاهده، گفت و شنودها، مصاحبه، اسناد و مدارک، خاطرات پاسخ‌دهندگان و تأملات شخصی خود پژوهشگر. نظریه­ پردازی زمینه­ بنیان از فراگردی استفاده می­ کند که مستلزم گردآوری و تحلیل همزمان و زنجیره ­وار داده‌­ها است.

در این استراتژی پژوهشی، از نمونه ­برداری نظری استفاده می­ شود. نمونه‌برداری نظری، فراگرد گردآوری داده برای تولید نظریه است که بدان وسیله تحلیل‌گر به طور همزمان داده‌هایش را جمع ­آوری، کدگذاری و تحلیل کرده و تصمیم می­‌گیرد به منظور بهبود نظریه خود تا هنگام ظهور آن، در آینده چه داده­ هایی را جمع­ آوری و در کجا آن­ها را پیدا کند.

فرایند نظریه پردازی نظریه­ داده‌بنیاد

نظریه‌­پردازی داده­‌بنیان مبتنی بر ۳ نوع کدگذاری باز، محوری و انتخابی است که در ادامه هر یک تشریح می‌­شوند.

  • کدگذاری باز Open Coding
  • کدگذاری محوری Axial Coding
  • کدگذاری انتخابی Selective Coding

انواع کدگذاری در روش گراندد تئوری

انواع کدگذاری در روش گراندد تئوری

کدگذاری آزاد ( باز) : کدگذاری، روند تجزیه و تحلیل داده‌­هاست. کدگذاری باز بخشی از فرایند تحلیل داده‌هاست که به خردکردن، مقایسه­‌سازی، نام‌گذاری، مفهوم‌­­پردازی و مقوله­‌بندی داده‌­ها می‌پردازد. طی کدگذاری باز، داده‌­ها به بخش‌­های مجزا خرد شده و برای به­‌دست آوردن مشابهت­‌ها و تفاوت­‌هایشان مورد بررسی قرار می­‌گیرند. کدگذاری باز دربرگیرنده رویه­‌های زیر است.

کدگذاری محوری: کدگذاری محوری مرحله دوم تجزیه و تحلیل در نظریه­‌پردازی زمینه‌­بنیان است. هدف این مرحله برقراری رابطه بین مقوله‌­های تولید شده در مرحله کدگذاری باز است. این کدگذاری، به این دلیل محوری نامیده شده که کدگذاری حول محور یک مقوله رخ می‌دهد. در این مرحله پژوهشگر یکی از مقوله‌ها را به عنوان مقوله محوری انتخاب کرده، آن را تحت عنوان پدیده محوری در مرکز فرایند، مورد کاوش قرار داده و ارتباط سایر مقولات را با آن مشخص می‌کند.

کدگذاری انتخابی : پدیده مورد نظر، ایده و فکر محوری، حادثه، اتفاق یا واقعه‌­ای است که جریان کنش­‌ها و واکنش‌­ها به سوی آن رهنمون می­‌شوند تا آن­ را اداره، کنترل و یا به آن پاسخ دهند. پدیده محوری با این سئوال اصلی همراه است که داده‌­ها به چه چیزی دلالت می­کنند؟  مقوله محوری ایده (انگاره، تصور) یا پدیده‌­ای است که اساس و محور فراگرد است. این مقوله همان عنوانی (نام یا برچسب مفهومی) است که برای چارچوب یا طرح به وجود آمده در نظر گرفته می‌­شود. مقوله‌­ای که به عنوان مقوله محوری انتخاب می‌شود باید به قدر کافی انتزاعی بوده و بتوان سایر مقولات اصلی را به آن ربط داد. اشتراوس (۱۹۸۷) ویژگی­‌های انتخاب مقوله محوری را موارد زیر بیان می‌کند.

ارائه الگوی پارادایمی

درکدگذاری‌باز، مقوله‌ها و مضامین اصلی پیرامون پدیده مورد مطالعه شناسایی می‌شوند. در کدگذاری‌محوری‌، مقوله‌ها‌ به‌طور نظام‌مند بهبودیافته و با زیرمقوله‌ها پیوند داده‌ می‌شوند‌. در نهایت از طریق، کدگذاری گزینشی، الگوی پارادایمی پژوهش ارائه می‌شود. یک مدل پارادایمی شامل موارد زیر است:

  • شرایط علی
  • شرایط زمینه‌ای
  • شرایط مداخله‌گر
  • استراتژی‌ها
  • پیامدها

ارائه الگوی پارادایمی در نظریه‌پردازی داده‌بنیاد

از طریق الگوی پارادایمی، گستره پژوهش تا سطح یکی از چندین فرایند یا شرایط اجتماعی اصلی که در داده‌ها وجود دارند، فشرده‌تر می‌شود. ظهور متغیر محوری در مطالعه، به عنوان راهنمایی برای گردآوری و تحلیل داده‌های بیشتر بعدی نیز، عمل می‌کند، یعنی مقوله محوری سبب جهت‌دهی به نمونه برداری نظری می‌شود.

نتیجه‌گیری

هدف نظریه­پردازی زمینه ­بنیان، تولید نظریه است نه توصیف صرف پدیده. برای اینکه تحلیل­‌ها به نظریه تبدیل شوند مفاهیم باید به طور منظم به یکدیگر ربط یابند. در کدگذاری محوری، مبانی و پایه­های کدگذاری انتخابی پی­ریزی می­شود. کدگذاری انتخابی مرحله اصلی نظریه­پردازی است که مقوله محوری را به شکلی نظام­مند به دیگر مقوله­ها ربط داده، آن روابط را در چارچوب یک روایت و داستان، روشن کرده و مقوله­هایی را که به بهبود و توسعه بیشتری نیاز دارند، اصلاح می‌­کند.

کدگذاری انتخابی، یافته­های مراحل کدگذاری قبلی را گرفته، مقوله محوری را انتخاب می­کند، به شکلی نظام­مند آن را به دیگر مقوله­ها ربط می­دهد، آن روابط را اثبات می­کند، و مقوله­هایی را که به بهبود و توسعه بیشتری نیاز دارند تکمیل می­کند. در این حالت توجه به روابط میان مقوله­ها بر مبنای مشخصه­ها و ابعادشان است.

اولین گام در کدگذاری انتخابی تشریح خط اصلی داستان است. گام دوم ربط دادن مقوله‌های تکمیلی حول مقوله محوری با استفاده از یک مدل است. در مرحله بعد هر یک از مقوله­‌ها می­باید به ابعادشان مرتبط شوند. گام چهارم به تائید رساندن آن روابط با استفاده از داده‌هاست. آخرین مرحله تکمیل مقوله­‌هایی است که نیاز به اصلاح و یا بسط و گسترش دارند. در نهایت نظریه زمینه‌­بنیان ممکن است با گزاره‌­ها یا قضایایی پایان یابد که روابط بین مقوله­‌ها را در الگوی کدگذاری محوری روشن می‌­کنند.

منبع: آموزش روش گراندد تئوری نوشته آرش حبیبی نشر الکترونیک پارس مدیر

تحلیل عاملی تاییدی چیست؟

تحلیل عاملی تاییدی چیست؟

تحلیل عاملی تاییدی (Confirmatory Factor Analysis) یک روش آماری است که به کمک آن می‌توان به تأیید یا رد فرضیاتی درباره ساختار عاملی متغیرها پرداخت. در این روش، فرضیات محدوده‌ای از ساختار عاملی متغیرها پیشنهاد می‌شود و سپس اطلاعات موجود در داده‌ها جهت بررسی صحت این فرضیات استفاده می‌شود.

در تحلیل عاملی تاییدی، یک مدل ساختاری از پیش تعریف شده است و سپس با استفاده از روش‌های آماری، فرضیاتی درباره ساختار عاملی مورد بررسی قرار می‌گیرد. سپس با استفاده از معیارهایی مانند chi-square، comparative fit index (CFI)، root mean square error of approximation (RMSEA) و …، صحت مدل ساختاری مورد بررسی ارزیابی می‌شود. اگر مدل ساختاری با داده‌ها مطابقت داشته باشد، می‌توان ادعا کرد که فرضیاتی که در ابتدا پیشنهاد شده بود، به خوبی تأیید شده است.

تحلیل عاملی تاییدی معمولاً برای بررسی فرضیات پژوهشی، سنجش سازوکارهای پنهان و تعیین پایایی و اعتبار پرسشنامه‌ها و مقیاس‌های روان‌شناسی استفاده می‌شود. این روش در پژوهش‌های با مقیاس بزرگ و پیچیده، که شامل بسیاری از متغیرها و عوامل هستند، بسیار مفید است.

در کل، تحلیل عاملی تاییدی به عنوان یک ابزار قدرتمند در تحقیقات روان‌شناسی و دیگر علوم اجتماعی برای تأیید یا رد فرضیاتی درباره ساختار عاملی متغیرها و تعیین پایایی و اعتبار پرسشنامه‌ها و مقیاس‌ها استفاده می‌شود.

برای مشاهده لیست همه ی  پرسشنامه های استاندارد لطفا همین جا روی پرسشنامه استاندارد  کلیک فرمایید.

تحلیل داده های آماری برای پایان نامه و مقاله نویسی ،تحلیل داده های آماری شما با نرم افزارهای کمی و کیفی ،مناسب ترین قیمت و کیفیت عالی انجام می گیرد.نرم افزار های کمی: SPSS- PLS – Amosنرم افزار کیفی: Maxqudaتعیین حجم نمونه با:Spss samplepower

روش های تماس:Mobile :  09143444846  واتساپ – تلگرام کانال

تلگرام سایت: برای عضویت در کانال تلگرام سایت اینجا کلیک کنید(البته قبلش فیلتر شکن روشن شود!!) مطالب جالب علمی و آموزشی در این کانال درج می گردد.

کنترل ذهن - انتظار - موفقیت انگیزش - آینده نگری- پژوهش - تفکر

تحلیل عاملی اکتشافی چیست؟

تحلیل عاملی اکتشافی (Exploratory Factor Analysis) یک روش آماری است که به کمک آن می‌توانیم سعی کنیم که ساختار داخلی متغیرهای مختلف را به دست آوریم. در واقع، با استفاده از این روش، می‌توانیم بررسی کنیم که آیا متغیرها با هم ارتباط دارند و در چه مقداری با هم همبستگی دارند.

در این روش، ابتدا مجموعه‌ای از متغیرها را در نظر می‌گیریم و سپس با استفاده از روش‌های آماری، تلاش می‌کنیم تا به دست آوریم که چند عامل اصلی (Factor) در پشت ساختار داده‌ها وجود دارند و هر عامل به چه متغیرهایی وابسته است. در واقع، با استفاده از این روش، می‌توانیم به دست آوریم که متغیرهای مختلف چگونه در یک مجموعه عوامل (Factors) قرار دارند و به طور خلاصه، این که هر متغیر در چه عامل‌هایی نقش دارد.

تحلیل عاملی اکتشافی به عنوان یکی از روش‌های خوشه‌بندی، برای شناسایی الگوهای موجود در داده‌ها و بررسی روابط بین متغیرها استفاده می‌شود. استفاده از این روش در بسیاری از حوزه‌های علمی و صنعتی، از جمله روان‌شناسی، علوم اجتماعی، مدیریت، بازاریابی و … رایج است.

مثالی از کاربرد تحلیل عاملی اکتشافی در علوم اجتماعی:

به عنوان مثال، در مطالعات اجتماعی می‌توان از تحلیل عاملی اکتشافی برای شناسایی عوامل مؤثر در تعیین نگرش و نظرات افراد نسبت به موضوعات مختلف استفاده کرد.

فرض کنید که می‌خواهیم بررسی کنیم که چه عواملی مؤثر بر نگرش افراد نسبت به حقوق زنان هستند. در این مثال، ما می‌توانیم از یک پرسشنامه برای جمع‌آوری داده‌ها استفاده کنیم. پرسشنامه ممکن است شامل چندین سوال در مورد نگرش به حقوق زنان باشد که هر یک از این سوال‌ها یک متغیر است. با استفاده از تحلیل عاملی اکتشافی، می‌توانیم به دست آوریم که کدام سوالات با هم مرتبط هستند و چه عواملی در تعیین نگرش افراد نسبت به حقوق زنان مؤثر هستند.

در این مثال، یکی از عواملی که ممکن است تعیین کننده نگرش افراد نسبت به حقوق زنان باشد، عامل “تفاوت‌های جنسیتی” باشد. این عامل می‌تواند شامل سوالاتی باشد که مرتبط با تفاوت‌های جنسیتی و نقش زنان و مردان در جامعه هستند. عامل دیگری که ممکن است در تعیین نگرش افراد نسبت به حقوق زنان مؤثر باشد، “مساویت” است. این عامل می‌تواند شامل سوالاتی باشد که مرتبط با حقوق مساوی برای زنان و مردان در جامعه هستند.

در نتیجه، با استفاده از تحلیل عاملی اکتشافی، ما می‌توانیم به دست آوریم که چه عواملی در تعیین نگرش افراد نسبت به حقوق زنان مؤثر هستند و این که هر متغیر در کدام عامل نقش دارد. این اطلاعات می‌تواند در تدوین سیاست‌هایی مبتنی بر تعیین اولویت‌های مؤثر در

نحوه ی انجام تحلیل عاملی اکتشافی مثال بالا را در Spss :

این منظور، می‌توانید از دستورالعمل‌های زیر استفاده کنید:

ابتدا، داده‌های خود را در SPSS وارد کنید و به مسیر Analyze > Dimension Reduction > Factor بروید.

در پنجره باز شده، می‌توانید متغیرهای مورد نظر خود را انتخاب کنید و سپس روش تحلیل عاملی اکتشافی را انتخاب کنید.

در بخش “Extraction”, می‌توانید روش استخراج عامل‌ها را انتخاب کنید. روش‌های مختلفی برای استخراج عامل‌ها وجود دارد، مانند روش Principal Component Analysis (PCA) و Maximum Likelihood (ML).

در بخش “Rotation”, می‌توانید روش چرخش عامل‌ها را انتخاب کنید. روش‌های مختلفی برای چرخش عامل‌ها وجود دارد، مانند روش Varimax و Oblimin.

در بخش “Scores”, می‌توانید برای هر شرکت کننده، امتیاز عامل‌ها را محاسبه کنید.

در نهایت، با کلیک بر روی دکمه “OK”، SPSS شروع به اجرای تحلیل عاملی اکتشافی شما می‌کند و نتایج را به شما نمایش می‌دهد.

در نتیجه، با استفاده از این روش، می‌توانید به دست آورید که چه عامل‌هایی در تعیین نگرش افراد نسبت به حقوق زنان مؤثر هستند و این که هر متغیر در کدام عامل نقش دارد. این اطلاعات می‌تواند در تدوین سیاست‌هایی مبتنی بر تعیین اولویت‌های مؤثر در ارتقای حقوق زنان موثر باشد.

تحلیل عاملی اکتشافی در نرم افزار های دیگر:

از جمله نرم افزارهایی که می‌توانید برای انجام تحلیل عاملی اکتشافی استفاده کنید عبارتند از R، SAS، و MATLAB.

در R، می‌توانید از پکیج “psych” برای انجام تحلیل عاملی استفاده کنید. برای انجام تحلیل عاملی اکتشافی، می‌توانید از تابع “fa()” استفاده کنید. این تابع شامل پارامترهایی است که می‌توانید برای تنظیم تحلیل عاملی خود استفاده کنید.

در SAS، می‌توانید از روش‌های مختلفی برای انجام تحلیل عاملی استفاده کنید، از جمله روش‌های Principal Component Analysis (PCA) و Maximum Likelihood (ML). برای انجام تحلیل عاملی اکتشافی در SAS، می‌توانید از ماژول “PROC FACTOR” استفاده کنید.

در MATLAB، می‌توانید از پکیج “Statistics and Machine Learning Toolbox” برای انجام تحلیل عاملی استفاده کنید. برای انجام تحلیل عاملی اکتشافی، می‌توانید از تابع “factoran()” استفاده کنید. این تابع شامل پارامترهایی است که می‌توانید برای تنظیم تحلیل عاملی خود استفاده کنید.

در هر صورت، برای انجام تحلیل عاملی اکتشافی در هر نرم افزاری، شما باید داده‌های خود را به فرمت مناسب وارد کنید و پارامترهای مورد نیاز را برای تحلیل عاملی خود تنظیم کنید. سپس، برنامه را اجرا کرده و نتایج را بررسی کنید.

برای یادگیری بیشتر در مورد تحلیل عاملی اکتشافی، می‌توانید از منابع معتبر زیر استفاده کنید:

“Factor Analysis: A Practical Introduction” نوشته ی Jeremy Miles: این کتاب یکی از بهترین منابع برای یادگیری تحلیل عاملی اکتشافی است. همچنین، این کتاب شامل مثال‌هایی از تحلیل داده‌های واقعی است که می‌تواند به شما در فهم بهتر تحلیل عاملی اکتشافی کمک کند.

“Applied Multivariate Statistics for the Social Sciences” نوشته ی James P. Stevens: این کتاب درباره روش‌های آماری مختلف استفاده شده در تحلیل داده‌های چند متغیره می‌باشد و بخشی درباره تحلیل عاملی اکتشافی است.

“Factor Analysis in SPSS” نوشته ی Andy Field: این کتاب به شما نحوه استفاده از تحلیل عاملی در SPSS را آموزش می‌دهد. در این کتاب به توضیح مراحل تحلیل عاملی در SPSS و تفسیر نتایج آن پرداخته می‌شود.

“Factor Analysis: Statistical Methods and Practical Issues” نوشته ی Jae-On Kim and Charles W. Mueller: این کتاب شامل توضیحاتی درباره تاریخچه و تئوری تحلیل عاملی، روش‌های مختلف استخراج عامل‌ها و دستورالعمل‌های اجرایی برای انجام تحلیل عاملی است.

“Factor Analysis for Applied Research” نوشته ی Robert Jennrich and Douglas A. Harrington: این کتاب به شما نحوه تحلیل داده‌های چند متغیره با استفاده از تحلیل عاملی را آموزش می‌دهد. این کتاب شامل مثال‌هایی از تحلیل داده‌های واقعی است که به شما در فهم بهتر تحلیل عاملی کمک می‌کند.

همچنین، منابع معتبر دیگری نیز برای یادگیری تحلیل عاملی اکتشافی وجود دارد که می‌توانید از آنها استفاده کنید.

برای مشاهده لیست همه ی  پرسشنامه های استاندارد لطفا همین جا روی پرسشنامه استاندارد  کلیک فرمایید.

تحلیل داده های آماری برای پایان نامه و مقاله نویسی ،تحلیل داده های آماری شما با نرم افزارهای کمی و کیفی ،مناسب ترین قیمت و کیفیت عالی انجام می گیرد.نرم افزار های کمی: SPSS- PLS – Amosنرم افزار کیفی: Maxqudaتعیین حجم نمونه با:Spss samplepower

روش های تماس:Mobile :  09143444846  واتساپ – تلگرام کانال

تلگرام سایت: برای عضویت در کانال تلگرام سایت اینجا کلیک کنید(البته قبلش فیلتر شکن روشن شود!!) مطالب جالب علمی و آموزشی در این کانال درج می گردد.

مراحل طراحی پرسشنامه و اعتبار سنجی آن

مراحل طراحی پرسشنامه عبارتند از:

مراحل طراحی پرسشنامه عبارتند از:

تعیین هدف: در این مرحله باید هدف واقعی از پرسشنامه را تعیین کرد.

واضح کردن اهداف پژوهش و تعیین نیازهای اطلاعاتی مورد نیاز از مهمترین اقدامات این مرحله است.

انتخاب موضوع و بعد‌های مورد نظر:

در این مرحله لازم است به اهداف ، سوال ها یا فرضیه های پژوهش مراجعه شود تا موضوع و ابعاد پرسشنامه مشخص گردد.

بعد اصلی پرسشنامه باید مشخص شود و سپس سوالات مرتبط با این بعد تهیه شوند.

باید توجه داشت که سوالات مورد انتظار برای مطالعه، باید مرتبط و معتبر باشند.

ارائه سوالات: در این مرحله سوالات پرسشنامه باید طراحی شوند.

سوال‌ها باید واضح، قابل فهم و مرتبط با هدف اصلی پرسشنامه باشند.

تعیین فرمت پرسشنامه: در این مرحله، باید فرمت پرسشنامه، چیدمان سوالات و نحوه پاسخ‌گویی مشخص شود.

برای مثال، فرمت می‌تواند شامل طرح لیکرت با پاسخ‌های چندگزینه، پاسخ کوتاه، پاسخ طولانی و غیره باشد.

اعتبارسنجی:

برای اعتبارسنجی پرسشنامه، باید آن را به گروهی از افراد که در هدف اصلی پرسشنامه قرار دارند، تحویل داد و از آن‌ها درخواست نظر و بازخورد بگیرید. سپس با تحلیل نتایج، می‌توانید پرسشنامه را اصلاح و تکمیل کنید.

به طور خلاصه اعتبار سنجی در زیر شرح داده می شود:

اعتبارسنجی پرسشنامه به منظور اطمینان از صحت و قابل اعتماد بودن پرسشنامه و اطمینان از اینکه پرسشنامه به درستی می‌تواند اطلاعات مورد نیاز را جمع آوری کند، انجام می‌شود. این فرآیند شامل مراحل زیر است:

اعتبار ظاهری (Face Validity): در این مرحله، پرسشنامه به یک گروه از افراد تحویل داده می‌شود تا بررسی کنند که آیا سوالات پرسشنامه مرتبط و معتبر برای موضوع مورد نظر هستند یا خیر. این فرایند برای تضمین اینکه پرسشنامه شامل سوالات مناسب است، بسیار مهم است.

پایایی (Reliability): پایایی به معنای تکرار پذیری و ثبات پاسخ‌گویی پرسشنامه است. برای اندازه گیری پایایی، می‌توان از روش‌های داخلی مانند ضریب آلفای کرونباخ استفاده کرد. این روش بر اساس همبستگی سوالات پرسشنامه با یکدیگر، ضریب پایایی را محاسبه می‌کند.

پایایی زمانی (Test-retest reliability): برای اندازه‌گیری پایایی زمانی، پرسشنامه به دو گروه از افراد در زمان‌های مختلف تحویل داده می‌شود و نتایج به دست آمده مقایسه می‌شوند. برای ارزیابی پایایی زمانی می‌توان از ضریب همبستگی دوباره تست استفاده کرد.

پایایی داخلی (Internal consistency): برای اندازه‌گیری پایایی داخلی، ارتباط سوالات یک بعد پرسشنامه با یکدیگر سنجیده می‌شود. این پایایی معمولاً توسط ضریب آلفای کرونباخ یا ضریب بیسر تعیین می‌شود.

روایی (Validity): روایی به معنای میزان صحت پرسشنامه در اندازه‌گیری مفهوم مورد نظر است. برای ارزیابی روایی، می‌توان از روش‌های داخلی مانند تحلیل عاملی تأییدی، روش روایی محتوایی و روش روایی معیاری استفاده کرد.

با توجه به اینکه اعتبارسنجی پرسشنامه به مراحل متعددی نیاز دارد، باید توجه داشت که این فرآیند باید با دقت و همراه با بررسی‌های دقیق و دسته‌بندی‌های مناسب انجام شود. همچنین، برای اطمینان از صحت و قابلیت استفاده پرسشنامه، باید این فرآیند به صورت دوره‌ای تکرار و به‌روزرسانی شود.

یکی از موارد مهمی که در این مرحله باید به آن توجه شود تحلیل عاملی می باشد. تحلیل عاملی به دو صورت تاییدی و اکتشافی می باشد. تحلیل عاملی تأییدی با نرم افزار هایی مانند Amos ، Lisrel و pls انجام می گیرد. تحلیل عاملی اکتشافی را می توان با نرم افزار Spss انجام داد.

در مقالات بعدی به تفصیل در مورد تحلیل عاملی بحث خواهد شد.

تست و اجرا: در این مرحله، پرسشنامه باید تست و اجرا شود. برای این منظور، لازم است تا پرسشنامه به گروهی از افراد تحویل داده شود و نتایج آن‌ها تجمع شود.

سپس با تحلیل نتایج، می‌توانید از پرسشنامه برای مطالعه و تحقیق خود استفاده کنید.

تجدیدنظر و به‌روزرسانی: پرسشنامه باید به‌روزرسانی شود تا با نیازهای جدید 

انواع مقیاس های اندازه گیری با ذکر مثال

انواع مقیاس های اندازه گیری با ذکر مثال

در اندازه‌گیری های پژوهشی، مقیاس‌های مختلفی برای اندازه‌گیری متغیرهای مختلف استفاده می‌شوند.

 این مقیاس‌ها می‌توانند بر اساس طبیعت متغیر، نوع داده‌ها و هدف اندازه‌گیری تعریف شوند.

  1. مقیاس اسمی: این مقیاس برای اندازه‌گیری داده‌های کیفی مورد استفاده قرار می‌گیرد و دارای دسته‌های گسسته است.

 برای مثال، می‌توانیم برای این مقیاس، رنگ مورد علاقه شخص را نام ببریم.

مثال های دیگر: جنسیت، سبک موسیقی، شهر محل زندگی

  • مقیاس ترتیبی: این مقیاس برای اندازه‌گیری داده‌هایی استفاده می‌شود که ترتیب مشخصی دارند ولی فاصله بین داده‌ها نامعلوم است.

 برای مثال، می‌توانیم سطوح درد را به عنوان یک مثال برای این مقیاس ذکر کنیم.

یا سطوح تحصیلات (دیپلم، لیسانس، فوق لیسانس، دکترا)، شغل (کارمند، مدیر، صاحب کسب و کار)، مراحل بیماری (سالم، بیماری در دوران ابتدایی، بیماری در دوران پیشرفته)

  • مقیاس اندازه‌گیری فاصله ای: این مقیاس دارای واحد اندازه‌گیری است و امکان انجام محاسبات آماری را فراهم می‌کند. برای مثال، قد و وزن فرد به عنوان یک مثال از این مقیاس می‌تواند ذکر شود.

یا درجه حرارت، فشار خون، سرعت خودرو

  • مقیاس نسبی: این مقیاس دارای نقطه مبنا است و امکان انجام محاسبات ریاضیاتی مانند ضرب و تقسیم را فراهم می‌کند.

 برای مثال، درصد دانش آموزی که به طور کلی به موفقیت دست می‌یابد، یک نمونه از این مقیاس است.

درصد تخفیف، نرخ بهره بانکی، ضریب تبدیل واحد پول، سرعت رشد جمعیت

  • مقیاس اندازه‌گیری دو متغیره: این مقیاس‌ها برای اندازه‌گیری دو متغیر به طور همزمان استفاده می‌شوند.

برای مثال، می‌توانیم قطر و وزن توپ را به عنوان یک نمونه از این مقیاس ذکر کنیم.

موقعیت مکانی دو نقطه روی نقشه، میزان مصرف برق و گاز در یک خانه، طول و عرض عینک یا ساعت

در جدول زیر، برخی از انواع مقیاس‌های اندازه‌گیری را با هم مقایسه کرده‌ایم:

نوع مقیاستوضیحمثال
اسمیمعمولاً به صورت دسته‌ای است و برای داده‌های کیفی مورد استفاده قرار می‌گیرد.جنسیت، رنگ چشم
ترتیبیاین مقیاس ترتیب مشخصی برای داده‌ها بر اساس مفهومی مشخص دارد.سطوح تحصیلات، شغل
اندازه‌گیری فاصله ایاین مقیاس دارای واحد اندازه‌گیری است و امکان انجام محاسبات آماری را فراهم می‌کند.قد، وزن
نسبیاین مقیاس دارای نقطه مبنا است و امکان انجام محاسبات ریاضیاتی مانند ضرب و تقسیم را فراهم می‌کند.درصد، نرخ
اندازه‌گیری دو متغیرهاین مقیاس‌ها برای اندازه‌گیری دو متغیر به طور همزمان استفاده می‌شوند.طول و عرض، قطر و وزن

لازم به ذکر است که این دسته‌بندی‌ها ممکن است بر اساس نوع متغیر و هدف اندازه‌گیری تفاوت کنند و برخی از مقیاس‌ها می‌توانند در چندین دسته قرار گیرند.

مقیاس نسبی (نسبتی) در آمار

مقیاس نسبی در آمار

مقیاس نسبی یکی از انواع مقیاس‌های آماری است که برای اندازه‌گیری و مقایسه متغیرهایی که از نمونه‌های با اندازه‌های مختلف به دست می‌آیند، استفاده می‌شود. در این نوع مقیاس‌ها، ارزش متغیر به صورت نسبی به دیگر مقادیر در نمونه مشخص می‌شود. به عبارت دیگر، این مقیاس‌ها به ما امکان می‌دهند تا متغیرهایی با واحدها و مقادیر مختلف را با هم مقایسه کنیم.

مقیاس‌های نسبی شامل مقایسه‌هایی مانند نسبت، درصد، ضریب، و ارزش p به عنوان یک معیار احتمالی می‌شوند. به طور مثال، نسبت متغیر X به متغیر Y به صورت X/Y تعریف می‌شود و در صورتی که ارزش نسبت برابر با 1 باشد، به این معنی است که دو متغیر با هم برابرند. اگر نسبت بزرگتر از 1 باشد، به این معنی است که متغیر اول بزرگتر از دوم است و اگر کمتر از 1 باشد، به این معنی است که متغیر اول کوچکتر از دوم است.

در مقابل، مقیاس‌های دیگری مانند مقیاس‌های مطلق، مانند میانگین و واریانس، بر اساس واحد‌های مشخصی تعریف می‌شوند و به همین دلیل برای مقایسه متغیرهایی با واحدها و مقادیر مختلف نیاز به تبدیل داده‌ها به واحد‌های مشترک دارند.

استفاده از مقیاس‌های نسبی در آمار، به ما امکان مقایسه و تفسیر داده‌های مختلف را با هم فراهم می‌کند و باعث می‌شود تحلیل داده‌ها به صورت دقیق‌تر و معتبرتری انجام شود.

یک مثال از استفاده از مقیاس‌های نسبی:

فرض کنید می‌خواهید میزان فروش یک محصول در دو دوره زمانی مختلف را مقایسه کنید. در دوره اول، فروش این محصول 1000 واحد بوده است و در دوره دوم، فروش آن به 1500 واحد افزایش یافته است. برای مقایسه این دو دوره، می‌توان از مقیاس نسبت استفاده کرد.

در این صورت، نسبت فروش دوره دوم به دوره اول برابر با 1500/1000=1.5 خواهد بود. این نسبت نشان می‌دهد که فروش در دوره دوم نسبت به دوره اول به میزان 50 درصد افزایش یافته است. اگر به جای مقیاس نسبت، از مقیاس مطلق مانند افزایش تعداد واحدهای فروش استفاده می‌کردیم، این نتیجه قابل مقایسه نبود و نمی‌توانستیم به این سادگی بفهمیم که درصد افزایش فروش در دوره دوم چقدر بوده است.

بنابراین، استفاده از مقیاس‌های نسبی مانند نسبت، درصد و ضریب، به ما این امکان را می‌دهد که متغیرهایی با واحدها و مقادیر مختلف را با هم مقایسه کنیم و تحلیل داده‌ها را به صورت دقیق‌تر و معتبرتر انجام دهیم.

برای مشاهده لیست همه ی  پرسشنامه های استاندارد لطفا همین جا روی پرسشنامه استاندارد  کلیک فرمایید.

تحلیل داده های آماری برای پایان نامه و مقاله نویسی ،تحلیل داده های آماری شما با نرم افزارهای کمی و کیفی ،مناسب ترین قیمت و کیفیت عالی انجام می گیرد.نرم افزار های کمی: SPSS- PLS – Amosنرم افزار کیفی: Maxqudaتعیین حجم نمونه با:Spss samplepower

روش های تماس:Mobile :  09143444846  واتساپ – تلگرامکانال تلگرام سایت: برای عضویت در کانال تلگرام سایت اینجا کلیک کنید(البته قبلش فیلتر شکن روشن شود!!) مطالب جالب علمی و آموزشی در این کانال درج می گردد.

مقیاس فاصله ای چیست؟

مقیاس فاصله ای چیست؟

مقیاس فاصله‌ای (distance metric) در ریاضیات، یک تابع است که دو نقطه را به عنوان ورودی دریافت کرده و فاصله بین آن‌ها را به عنوان خروجی محاسبه می‌کند. این مقیاس‌ها برای اندازه‌گیری فاصله بین داده‌ها در بسیاری از روش‌های یادگیری ماشین و پردازش تصویر و صدا و همچنین در کاربردهای مختلف دیگر مانند شباهت متن و برخی مسائل بهینه‌سازی مورد استفاده قرار می‌گیرند.

برخی از مقیاس‌های فاصله معروف عبارتند از فاصله یا هم‌نشینی یا هم‌خوانی یا شباهت کسینوسی (Cosine Similarity) برای بردارها، فاصله منهتن (Manhattan Distance) و فاصله یا هم‌خوانی یا هم‌نشینی یا شباهت یکتای جاکارد (Jaccard Similarity) برای مجموعه‌ها، و فاصله اقلیدسی (Euclidean Distance) برای داده‌های عددی.

مقیاس فاصله‌ای در آمار به معنای یک معیار کمی است که برای اندازه‌گیری فاصله بین دو متغیر استفاده می‌شود. فاصله در اینجا به معنای فاصله میان دو متغیر در فضای مشخصی است که می‌تواند فضای معمولی دو بعدی، سه بعدی و یا فضای بیشتر باشد. به طور کلی، مقیاس فاصله‌ای به عنوان یک ابزار ارزیابی استفاده می‌شود تا میزان شباهت یا تفاوت بین دو متغیر را اندازه‌گیری کند.

برخی از مقیاس‌های فاصله‌ای معروف شامل مقیاس فاصله یا همواره مثبت اقلیدسی، مقیاس فاصله منهتن، مقیاس فاصله کوسینوسی و مقیاس جاکارد هستند. هر یک از این مقیاس‌های فاصله‌ای برای اندازه‌گیری فاصله‌ی میان دو متغیر بر اساس قواعد و الگوهای خاص خودشان عمل می‌کنند. به طور کلی، استفاده از مقیاس فاصله‌ای مناسب و مناسب برای متغیرهای مورد بررسی، به صورت معمول به کاهش خطاهای تحلیلی و بهبود دقت نتایج کمک می‌کند.

مقیاس‌های فاصله‌ای در آمار و علم داده‌ها بسیار مهم هستند و در بسیاری از برنامه‌های کاربردی استفاده می‌شوند. به طور مثال، در مسائل دسته‌بندی، مقیاس فاصله‌ای می‌تواند برای اندازه‌گیری فاصله میان دو نمونه استفاده شود. در این مورد، می‌توان از مقیاس فاصله یا همواره مثبت اقلیدسی برای اندازه‌گیری فاصله میان دو نمونه استفاده کرد.

همچنین، مقیاس فاصله‌ای می‌تواند در مسائل خوشه‌بندی نیز مورد استفاده قرار گیرد. در این حالت، می‌توان از مقیاس فاصله منهتن یا مقیاس فاصله کوسینوسی استفاده کرد. مثلا می‌توان با استفاده از مقیاس فاصله منهتن، فاصله دو نمونه را در فضای چند بعدی محاسبه کرد و آن‌ها را در خوشه‌های مختلف قرار داد.

در مسائل پردازش تصویر و گراف، مقیاس فاصله‌ای می‌تواند برای اندازه‌گیری فاصله میان دو تصویر و یا دو ساختار گرافی استفاده شود. در این حالت، می‌توان از مقیاس فاصله کوسینوسی یا مقیاس جاکارد استفاده کرد.

در کل، استفاده از مقیاس‌های فاصله‌ای مناسب و مناسب برای مسائل مختلف، به دقت و کیفیت نتیجه تحلیلی کمک می‌کند و می‌تواند در تصمیم‌گیری‌های مختلف مفید باشد.

برای مشاهده لیست همه ی  پرسشنامه های استاندارد لطفا همین جا روی پرسشنامه استاندارد  کلیک فرمایید.

تحلیل داده های آماری برای پایان نامه و مقاله نویسی ،تحلیل داده های آماری شما با نرم افزارهای کمی و کیفی ،مناسب ترین قیمت و کیفیت عالی انجام می گیرد.نرم افزار های کمی: SPSS- PLS – Amosنرم افزار کیفی: Maxqudaتعیین حجم نمونه با:Spss samplepower

روش های تماس:Mobile :  09143444846  واتساپ – تلگرامکانال تلگرام سایت: برای عضویت در کانال تلگرام سایت اینجا کلیک کنید(البته قبلش فیلتر شکن روشن شود!!) مطالب جالب علمی و آموزشی در این کانال درج می گردد.

پایان نامه نویسی مقاله نویسی

مقیاس ترتیبی چیست؟

مقیاس ترتیبی چیست؟

مقیاس ترتیبی چیست؟

مقیاس ترتیبی یا مقیاس رتبه‌ای، یکی از انواع مقیاس‌های آماری است که برای مرتب‌سازی داده‌ها بر اساس ترتیب آن‌ها به کار می‌رود. در این مقیاس، داده‌ها بر اساس رتبه‌ی آن‌ها در مجموعه مرتب می‌شوند و به هر داده یک رتبه نسبت داده می‌شود. در اینجا، رتبه به معنای جایگاه یا موقعیت داده در مجموعه داده‌هاست. برای مثال، اگر دو داده در مجموعه داده‌ها به ترتیب ۳ و ۷ قرار داشته باشند، داده با مقدار کمتر (یعنی ۳) رتبه‌ی ۱ و داده با مقدار بیشتر (یعنی ۷) رتبه‌ی ۲ را خواهد داشت.

مقیاس ترتیبی برای داده‌هایی که نمی‌توان برای آن‌ها مقدار عددی نسبت داد، مانند رنگ‌ها یا دسته‌بندی‌های کیفیتی، مناسب است. همچنین، این مقیاس در بررسی تفاوت بین داده‌ها و مقایسه آن‌ها با داده‌های دیگر نیز مفید است.

برای مشاهده لیست همه ی  پرسشنامه های استاندارد لطفا همین جا روی پرسشنامه استاندارد  کلیک فرمایید.

تحلیل داده های آماری برای پایان نامه و مقاله نویسی ،تحلیل داده های آماری شما با نرم افزارهای کمی و کیفی ،مناسب ترین قیمت و کیفیت عالی انجام می گیرد.نرم افزار های کمی: SPSS- PLS – Amosنرم افزار کیفی: Maxqudaتعیین حجم نمونه با:Spss samplepower

روش های تماس:Mobile :  09143444846  واتساپ – تلگرامکانال تلگرام سایت: برای عضویت در کانال تلگرام سایت اینجا کلیک کنید(البته قبلش فیلتر شکن روشن شود!!) مطالب جالب علمی و آموزشی در این کانال درج می گردد.