تحلیل آماری statistical analysis

انحراف چارکی چیست ؟

انحراف چارکی چیست ؟

انحراف چارکی (Quartile Deviation) یا نیم‌فاصله چارکی (Semi-Interquartile Range)، یکی از شاخص‌های پراکندگی است که برای اندازه‌گیری میزان پراکندگی داده‌ها حول میانه استفاده می‌شود.

انحراف چارکی (یا انحراف چارکی-بیل) به وضعیتی در علم آمار و تحلیل داده‌ها اشاره دارد که در آن توزیع داده‌ها از حالت نرمال (گوسی) انحراف دارد. این انحراف می‌تواند به دو شکل اصلی باشد: انحراف مثبت (چپ‌کج) و انحراف منفی (راست‌کج).

این شاخص بر اساس چارک‌ها (Quartiles) محاسبه می‌شود و به‌طور خاص، تفاوت بین چارک اول (Q1) و چارک سوم (Q3) را نشان می‌دهد. انحراف چارکی برای داده‌هایی که دارای توزیع نامتقارن یا داده‌های پرت (Outliers) هستند، مفید است.

انواع انحراف چارکی:

  1. انحراف مثبت (چپ‌کج): در این حالت، دنباله‌ی توزیع به سمت چپ کشیده شده و بیشتر داده‌ها در سمت راست توزیع قرار دارند. در این نوع انحراف، میانگین بیشتر از میانه است.
  2. انحراف منفی (راست‌کج): در این حالت، دنباله‌ی توزیع به سمت راست کشیده شده و بیشتر داده‌ها در سمت چپ توزیع قرار دارند. در این نوع انحراف، میانگین کمتر از میانه است.

اهمیت انحراف چارکی:

  • تحلیل داده‌ها: انحراف چارکی می‌تواند به تحلیل‌گران کمک کند تا درک بهتری از توزیع داده‌ها داشته باشند و تصمیمات بهتری بگیرند.
  • مدل‌سازی: در مدل‌سازی آماری، درک انحراف چارکی می‌تواند به انتخاب مدل‌های مناسب‌تر کمک کند.
  • تست‌های آماری: برخی از تست‌های آماری فرض می‌کنند که داده‌ها از توزیع نرمال پیروی می‌کنند. انحراف چارکی می‌تواند تأثیر منفی بر نتایج این تست‌ها داشته باشد.

این شاخص بر اساس چارک‌ها (Quartiles) محاسبه می‌شود و به‌طور خاص، تفاوت بین چارک اول (Q1) و چارک سوم (Q3) را نشان می‌دهد. انحراف چارکی برای داده‌هایی که دارای توزیع نامتقارن یا داده‌های پرت (Outliers) هستند، مفید است.


مفاهیم کلیدی:

  1. چارک‌ها (Quartiles):
    • چارک‌ها مقادیری هستند که داده‌ها را به چهار قسمت مساوی تقسیم می‌کنند.
    • چارک اول (Q1): مقداری که ۲۵٪ داده‌ها کمتر یا مساوی آن هستند.
    • چارک دوم (Q2): همان میانه است که ۵۰٪ داده‌ها کمتر یا مساوی آن هستند.
    • چارک سوم (Q3): مقداری که ۷۵٪ داده‌ها کمتر یا مساوی آن هستند.
  2. دامنه چارکی (Interquartile Range – IQR):
    • تفاوت بین چارک سوم و چارک اول:𝐼𝑄𝑅=𝑄3−𝑄1IQR=Q3−Q1
  3. انحراف چارکی (Quartile Deviation):
    • نصف دامنه چارکی:𝑄𝐷=𝑄3−𝑄12QD=2Q3−Q1​

مراحل محاسبه انحراف چارکی:

  1. مرتب‌سازی داده‌ها:
    • داده‌ها را به صورت صعودی مرتب کنید.
  2. محاسبه چارک اول (Q1) و چارک سوم (Q3):
    • چارک اول (Q1): مقداری که ۲۵٪ داده‌ها کمتر یا مساوی آن هستند.
    • چارک سوم (Q3): مقداری که ۷۵٪ داده‌ها کمتر یا مساوی آن هستند.
  3. محاسبه دامنه چارکی (IQR):
    • تفاوت بین چارک سوم و چارک اول:𝐼𝑄𝑅=𝑄3−𝑄1IQR=Q3−Q1
  4. محاسبه انحراف چارکی (QD):
    • نصف دامنه چارکی:𝑄𝐷=𝐼𝑄𝑅2QD=2IQR

مثال کاربردی:

فرض کنید داده‌های زیر را داریم:

12,15,17,20,22,25,28,30,35,4012,15,17,20,22,25,28,30,35,40

  1. مرتب‌سازی داده‌ها:
    داده‌ها از قبل مرتب‌شده هستند.
  2. محاسبه چارک اول (Q1) و چارک سوم (Q3):
    • چارک اول (Q1): مقداری که ۲۵٪ داده‌ها کمتر یا مساوی آن هستند.𝑄1=17Q1=17
    • چارک سوم (Q3): مقداری که ۷۵٪ داده‌ها کمتر یا مساوی آن هستند.𝑄3=30Q3=30
  3. محاسبه دامنه چارکی (IQR):𝐼𝑄𝑅=𝑄3−𝑄1=30−17=13IQR=Q3−Q1=30−17=13
  4. محاسبه انحراف چارکی (QD):𝑄𝐷=𝐼𝑄𝑅2=132=6.5QD=2IQR​=213​=6.5

مزایای انحراف چارکی:

  1. مقاومت در برابر داده‌های پرت:
    • انحراف چارکی تحت تأثیر داده‌های پرت قرار نمی‌گیرد، زیرا بر اساس چارک‌ها محاسبه می‌شود.
  2. مناسب برای توزیع‌های نامتقارن:
    • برای داده‌هایی که توزیع نرمال ندارند یا نامتقارن هستند، مناسب است.
  3. سادگی محاسبه:
    • محاسبه آن ساده و قابل فهم است.

معایب انحراف چارکی:

  1. عدم استفاده از تمام داده‌ها:
    • فقط از چارک اول و سوم استفاده می‌کند و اطلاعات مربوط به سایر نقاط داده را نادیده می‌گیرد.
  2. کاربرد محدود:
    • در مقایسه با شاخص‌های دیگر مانند انحراف معیار، کاربرد کمتری دارد.

تفاوت انحراف چارکی با انحراف معیار:

ویژگیانحراف چارکی (QD)انحراف معیار (SD)
تأثیر داده‌های پرتمقاوم استتحت تأثیر قرار می‌گیرد
توزیع داده‌هامناسب برای توزیع‌های نامتقارنمناسب برای توزیع نرمال
محاسبهبر اساس چارک‌هابر اساس میانگین و واریانس
استفاده از داده‌هافقط از چارک اول و سوم استفاده می‌کنداز تمام داده‌ها استفاده می‌کند

نتیجه‌گیری:

انحراف چارکی یک شاخص مفید برای اندازه‌گیری پراکندگی داده‌ها حول میانه است و به‌ویژه برای داده‌هایی که دارای توزیع نامتقارن یا داده‌های پرت هستند، مناسب است. این شاخص به‌طور گسترده در تحلیل‌های توصیفی و اکتشافی داده‌ها استفاده می‌شود.

خواهشمند است، نظر خودتان را در پایان نوشته در سایت https://rava20.ir مرقوم نمایید. همین نظرات و پیشنهاد های شما باعث پیشرفت سایت می گردد. با تشکر 

پیشنهاد می شود مطالب زیر را هم در سایت روا 20 مطالعه نمایید:

خطر واقعی استفاده از هوش مصنوعی برای انسان چیست؟

خواص خرمالو چیست ؟

رابطه کلسیم و ویتامین D در چیست ؟ / جدول مصرف روزانه بر اساس سن

مسئله پژوهش را چگونه بیان کنم؟

نوشتهظور از گویه در پرسشنامه چیست؟

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *